Ge mole fraction에 따른 SGOI MOSFET의 아날로그 특성

Analog performances of SGOI MOSFET with Ge mole fraction

  • 이재기 (가천의과학대학교 정보공학부) ;
  • 김진영 (인천대학교 전자공학과) ;
  • 조원주 (광운대학교 전자재료공학과) ;
  • 박종태 (인천대학교 전자공학과)
  • Lee, Jae-Ki (Dept. of Information Engineering, Gachon Univ. of Medicine and Science) ;
  • Kim, Jin-Young (Dept. of Electronics Engineering, Univ. of Incheon) ;
  • Cho, Won-Ju (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Park, Jong-Tae (Dept. of Electronics Engineering, Univ. of Incheon)
  • 투고 : 2011.04.05
  • 심사 : 2011.05.02
  • 발행 : 2011.05.25

초록

본 연구에서는 $Si_xGe_{1-x}$ 버퍼층 위에 성장된 strained-Si에 Ge 농도에 따라 n-MOSFET를 제작하고 소자 제작 후의 열처리 온도에 따른 소자의 아날로그 성능을 측정 분석하였다. 전자의 유효 이동도는 Ge 농도가 증가함에 따라 증가하였으나 32%로 높을 때에는 열처리 온도에 상관없이 오히려 감소하는 것으로 측정되었다. 상온에서 Ge 농도가 증가함에 따라 증가 소자의 아날로그 성능 지수가 우수하였으나 32% 농도에서는 오히려 좋지 않았다. 고온에서 strained-Si의 전자 유효이동도 저하가 Si보다 심하기 때문 SGOI 소자의 아날로그 성능 저하가 SOI 소자보다 심한 것을 알 수 있었다.

In this work, the analog performances of n-MOSFET fabricated on strained-Si/relaxed Si buffer layer with Ge mole fractions and thermal annealing temperatures after device fabrication have been characterized in Depth. The effective electron mobility was increased with the increase of Ge mole fraction for all annealing temperatures. However the effective electron mobility was decreased at the Ge mole fraction of 32%. The analog performances were enhanced with the increase of Ge mole fraction at the room temperature but they were degraded at the Ge mole fraction of 32%. Since the degradation of the effective electron mobility of strained-Si layer is more significant than one of conventional Si layer at elevated temperature, the degradation of analog performances of SGOI devices were increased than those of SOI devices.

키워드

참고문헌

  1. T.A. Langdo, M.T. Currie, Z.Y. cheng, J.G. fiorenenza, M. Erdtmann, G. Braithwait, C.W. Leitz, C.J. Vineis, J.A. carlin, A. Lochtefeld, M.T. Bulsara, I. Lauer, D.A. Antoniadis, M. Somerville, "Strained Si on insulator technology: from materials to devices," Solid-State electronics, vol. 48, pp.1357-1367, 2004. https://doi.org/10.1016/j.sse.2004.02.013
  2. M.J. Lee, and E.A. Fitzgerald, "Strained Si, SiGe, and Ge channel for high-mobility metal-oxidesemiconductor field-effect-transistors," Journal of Applied Physics, vol. 97, 011101, 2005.
  3. S.H. Olsen and A.G. Oneill, "Study of strain relaxation in Si/SiGe metal-oxide-semiconductor field-effect transistors," Journal of Applied Physics, vol.97, 114504, 2005.
  4. G.K. Dalapati, S. Chattopadhyay, K.S.K. Kwa, S.H. Olsen, Y.L. Tsang, R. Agaiby, A.G. Oneill, P. Dobroz, and S.J. Bull, "Impact of strained-Si thickness and Ge out-diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs," IEEE Trans. on Electron Device, vol. 53, pp.1142-1152, 2006. https://doi.org/10.1109/TED.2006.872086
  5. M.A. Pavanello, J.A. Martino, E. Simoen, R. Rooyackers, N. Collaert, C. Claeys, "Analog performance of standard and strain triple gate silicon-on-insulator nFinFETs," Solid-State electronics, vol. 52, pp.1904-1909, 2008. https://doi.org/10.1016/j.sse.2008.06.049
  6. O.M. Alatise, K.S.K. Kwa, S.H. Olsen, and A.G. Oneill, "Improved analog performance in strained-Si MOSFET using the thickness of the Silicon-Germanium strain-relaxed buffer as a design parameter," IEEE Trans. on Electron Device, vol. 56, pp.3041-3048, 2009. https://doi.org/10.1109/TED.2009.2030721
  7. J.J. Yan Kuo, W. Po-Nien Chen, and P. Su, "A comprehensive investigation of analog performance for uniaxial strained PMOSFETs," IEEE Trans. on Electron Device, vol. 56, pp.1142-1152, 2006.
  8. M. Kondo, N. Sugii, M. Miyamoto, Y. Hoshino, M. Hatori, W. Hirasawa, Y. Kimura, S. Kimura, Y. Kondo, and I. Yoshida, "Strained-silicon MOSFETs for analog applications: utilizing a supercritical-thickness strained layer for low leakage current and high breakdown voltage," IEEE Trans. on Electron device, vol. 53, pp. 1226-1233, 2006.
  9. W.Y. Loh, P. Majhi, S.H. Lee, J.H. Oh, B. Sassman, C. Young, G. Bersuker, B.J. Cho, C.S. Park, C.Y. Kang, P. Kirsch, B.H. Lee, H.R. Harris, H.H. Tseng, R. Jammy, "The effects of Ge composition and Si cap thickness on hot carrier reliability of Si/SiXGe1-X p-MOSFETs with high-K/metal gate," Sym. on VLSI Technology, pp.56-57, 2008.
  10. C.H. Liu and T.M. Pan, "Hot carrier and negative-bias temperature instability reliabilities of strained-Si MOSFETs," IEEE Trans. on Electron Device, vol. 54, pp. 1799-1803, 2007. https://doi.org/10.1109/TED.2007.898668
  11. J.P. Colinge, "Fully-depleted SOI CMOS for analog application," IEEE Trans. on Electron Device, vol. 45, pp. 1010-1016, 1998. https://doi.org/10.1109/16.669511
  12. V. Subramanian, A. Mercha, B. Parvais, J. Loo, C. Gustin, M. Dehan, "Impact of fin width on digital and analog performances of FinFET," Solid-State Electronics, vol. 51, pp.551-559, 2007. https://doi.org/10.1016/j.sse.2007.02.003
  13. O. Bonno, S. Barraud, F. Andrieu, D. Mariolle, F. Rochette, M. Casse, J.M. Hartmann, F. Bertin, and O. Fynot, "High-Field electron mobility in biaxial-tensile strained SOI: Low temperature measurement and correlation with the surface morphology," Sym. on VLSI Technology, pp. 134-135, 2007.
  14. M. Fox and S. Brodsky, "Effects of self heating induced negative output conductance in SOI circuits," in Proc. SOI Conf., pp.152-153, 1993.