DOI QR코드

DOI QR Code

Analytical, Numerical, and Experimental Comparison of the Performance of Semicircular Cooling Plates

반원형 구조의 냉각판 성능에 관한 해석적/수치해석적/실험적 비교

  • Cho, Kee-Hyeon (Energy & Resources Research Dept., Research Institute of Industrial Science & Technology (RIST)) ;
  • Kim, Moo-Hwan (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH))
  • 조기현 ((재)포항산업과학연구원) ;
  • 김무환 (포항공과대학교 기계공학과)
  • Received : 2011.04.28
  • Accepted : 2011.09.27
  • Published : 2011.12.01

Abstract

An analytical, numerical, and experimental comparison of the hydraulic and thermal performance of new vascular channels with semicircular cross sections was conducted. The following conditions were employed in the study: Reynolds number, 30-2000; cooling channels with a volume fraction of the cooling channels, 0.04; and pressure drop, $30-10^5$ Pa. Three flow configurations were considered: first, second, and third constructal structures with diameters optimized for hydraulic operations. To validate the proposed vascular designs by an analytical approach, 3-D numerical analysis was performed. The numerical model was also validated by the experimental data, and the comparison results were in excellent agreement in all cases. The validation study against the experimental data showed that compared to traditional channels, the optimized structure of the cooling plates could significantly enhance heat transfer and decrease pumping power.

해석적, 수치해석적, 실험적인 방법을 통하여 반원형상의 채널로 구성된 냉각판의 열수력학적인 특성을 고찰하였다. 본 연구에서는 레이놀즈 수 30-2000, 그에 따른 냉각판의 압력손실 30-105 Pa 의 구간에서 수행되었으며, 냉각채널 부피비 0.04, 시스템 크기 $10{\times}10$, $20{\times}20$$50{\times}50$ 각각에 대하여 최적화 및 최적화되지 않은 1, 2, 3 차 형상 6 개가 포함되었다. 해석적 방법으로 설계된 혈관구조 설계를 검증하기 위하여 3 차원 수치해석이 수행되었으며, 실험을 통하여 수치해석모델에 대한 타당성이 검증되었고, 전 범위에 걸쳐서 수치해석 및 실험결과가 비교적 잘 일치된 경향을 나타내었다. 또한, 최적화된 냉각판의 유동저항 및 열저항 모두 최적화되지 않은 냉각판에 비하여 뚜렷하게 작게 나타났으며, 제시된 수치해석 모델 역시 모두 냉각판의 성능예측에 유용한 도구임이 확인되었다.

Keywords

References

  1. Baek, S.M., Yu, S.H., Nam, J.H. and Kim, C.J., 2011, "ANumerical Study on Uniform Cooling of Large- Scale PEMFCs with Different Coolant Flow Field Designs," Applied Thermal Engineering, Vol. 31, pp.1427-1434. https://doi.org/10.1016/j.applthermaleng.2011.01.009
  2. Chen, Y. and Cheng, P., 2002, "Heat Transfer and Pressure Drop in a Fractal-Tree-Like Microchannel," International Journal of Heat and Mass Transfer, Vol. 45, pp. 2643-2648. https://doi.org/10.1016/S0017-9310(02)00013-3
  3. Jang, S.P. and Kim, S.J., 2005, "Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet," Transactions of the ASME, Vol. 127, pp. 770-779. https://doi.org/10.1115/1.1924628
  4. Choi, J., Kim, Y., Lee, Y., Lee, K. and Kim, Y., 2008, "Numerical Analysis on the Performance of Cooling Plates in a PEFC," Journal of Mechanical Science and Technology, Vol. 22, No.7, pp. 1417-1425. https://doi.org/10.1007/s12206-008-0409-6
  5. Cho, K.H., Ahn, H.S. and Kim, M.H., 2011, "Optimizing the Configurations of Cooling Channels with Low Flow Resistance and Thermal Resistance," Trans. of the KSME (B), Vol. 35, No. 1, pp. 9-15. https://doi.org/10.3795/KSME-B.2011.35.1.009
  6. Bejan, A., 1997, Advanced Engineering Thermo dynamics, 2nd ed., Wiley, New York, pp. 704-814.
  7. Daniels, B., Liburdy, J.A. and Pence, D.V., 2007, "Adiabatic Flow Boiling in Fractal-Like Microchannels," Heat Transfer Engineering, Vol. 28, pp. 817-825. https://doi.org/10.1080/01457630701378218
  8. Wechsatol, W. and Ordonez, J.C., 2006, "Kosaraju S., Constructal Dendritic Geometry and the Existence of Asymmetric Bifurcation," Journal of Applied Physics, Vol. 100, pp. 113514. https://doi.org/10.1063/1.2388732
  9. Raja, V.A.P., Basak, T, and Das S.K., 2008, "Thermal Performance of a Multi-Block Heat Exchanger Designed on the Basis of Bejan's Constructal Theory," International Journal of Heat and Mass Transfer Vol. 51, pp. 3582-3594. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.027
  10. Bejan, A., 2000, Shape and Structure: from Engineering to Nature, Cambridge University Press, Cambridge, UK, pp. 1-314.
  11. Lee, J., Kim, S., Lorente, S. and Bejan, A., 2008, "Vascularization with Trees Matched Canopy to Canopy: Diagonal Channels with Multiple Sizes", International Journal of Heat and Mass Transfer, Vol. 51, pp. 2029-2040. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.015
  12. Cho, K., Lee, J., Kim, M. and Bejan, A., 2009, "Vascular Design of Constructal Structures with Low Flow Resistance and Nonuniformtiy," International Journal. Therral. Sciences, Vol. 49, pp. 2309-2318.
  13. Rosaguti N.R., Fletcher D.F. and Haynes B.S., 2006, "Laminar Flow and Heat Transfer in a Periodic Serpentine Channel with Semi-Circular Cross- Section," International Journal of Heat and Mass Transfer 49, pp. 2912-2923. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.015
  14. Cho, K.H., Lee, J., Ahn, H.S., Bejan, A. and Kim, M.H., 2010, "Fluid Flow and Heat Transfer in Vascularized Cooling Plates," International Journal of Heat and Mass Transfer, Vol. 53, pp. 3607-3614. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.027
  15. FLUENT, Version 6.3, 2007, User's Manual, ANSYS Inc.
  16. Holman, J.P., 1984, "Experimental Methods for Engineers," McGraw-Hill, New York, pp. 50-57.