DOI QR코드

DOI QR Code

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit

분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계

  • Choi, Heung-Jae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Kim, Young-Gyu (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Shim, Sung-Un (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Jeong, Yong-Chae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Kim, Chul-Dong (Sewon Teletech. Inc.)
  • 최흥재 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 김영규 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 심성운 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 정용채 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 김철동 (세원텔레텍(주))
  • Accepted : 2010.05.17
  • Published : 2010.06.30

Abstract

We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

본 논문에서는 분산 소자 형태의 마이너스 군지연 회로를 이용함으로써 피드포워드 증폭기의 효율 개선 및 구현의 용이성을 증대시킬 수 있는 새로운 구조의 피드포워드 증폭기를 제안한다. 피드포워드 증폭기의 지연 소자에 의한 삽입 손실은 심각한 시스템의 효율 저하를 유발한다. 일반적으로 이러한 손실을 줄이기 위하여 고출력 동축 케이블 또는 지연 선로 여파기를 사용하지만, 그러한 소자들의 삽입 손실조차도 무시할 수 없어서 피드포워드 증폭기의 제약 사항으로 작용한다. 제안하는 마이너스 군지연 회로를 이용함으로써 광대역 선형화를 위해 혼변조 왜곡 신호 상쇄 루프에 사용되는 지연 소자를 제거할 수 있다. 중심 주파수가 2.14 GHz인 WCDMA 하향 대역에서 -9 ns의 군지연, 0.2 dB의 삽입 손실, 그리고 30 MHz의 대역폭을 갖도록 제작된 2단 분산 소자 마이너스 군지연 회로를 이용하여 제작된 제안하는 구조의 피드포워드 증폭기는 평균 출력 전력이 44 dBm 일 때 -53.2 dBc의 인접 채널 누설비(Adjacent Channel Leakage Ratio: ACLR)를, 19.4 %의 전력 부가 효율(Power Added Efficiency: PAE)을 갖는 것으로 측정되었다.

Keywords

References

  1. H. S. Black, "Translating system", U.S. Patent 1,686,792, Oct. 1928.
  2. H. Seidel, "A microwave feedforward experiment", Bell Syst. Tech. J., vol. 50, pp. 2879-2916, 1971. https://doi.org/10.1002/j.1538-7305.1971.tb02635.x
  3. S. C. Cripps, Advanced Techniques in RF Power Amplifiers Design, Norwood, MA, Artech House, 2002.
  4. N. Pothecary, Feedforward Linear Power Amplifier, Artech House, pp. 125-138, 1999.
  5. P. B. Kenington, High-Linearity RF Amplifier Design, Artech House, pp. 251-350, 2000.
  6. S. G. Kang, I. K. Lee, and K. S. Yoo, "Analysis and design of feedforward power amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1519-1522, 1997. https://doi.org/10.1109/MWSYM.1997.596621
  7. C. L. Larose, F. M. Ghannouchi, "Optimization of feedforward amplifier power efficiency on the basis of drive statics", IEEE Trans. Microw. Theory Tech., vol. 51, pp. 41-54, Jan. 2003. https://doi.org/10.1109/TMTT.2002.806946
  8. Y. C. Jeong, D. Ahn, Chul D. Kim, and I. S. Chang, "Feedforward amplifier using equal group-delay signal canceller", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1530-1533, 2006. https://doi.org/10.1109/MWSYM.2006.249604
  9. H. Choi, Y. Jeong, J. S. Kenney, and C. -D. Kim, "Dual-band feedforward linear power amplifier for digital cellular and IMT-2000 base-station", Microw. Optical Technol. Lett., vol. 51, no. 4, Apr. 2009.
  10. H. Choi, Y. Jeong, J. S. Kenney, and C. -D. Kim, "Cross cancellation technique employing an error amplifier", IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 488-490, Jul. 2008. https://doi.org/10.1109/LMWC.2008.925098
  11. D. Solli, R. Y. Chiao, "Superluminal effects and negative delays in electronics, and their applications", Physical Review E, issue 5, pp.056601 1-4, Nov. 2002.
  12. L. Brillouin, A. Sommerfeld, Wave Propagation and Group Velocity, Academic Press Network, pp. 113-137, 1960.
  13. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gainassisted superluminal light propagation", Nature 406, pp. 277-279, Jun. 2000. https://doi.org/10.1038/35018520
  14. M. Kitano, T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach", IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 1, pp. 43-51, Jan. 2003. https://doi.org/10.1109/JSTQE.2002.807979
  15. B. Ravelo, A. Perennec, and M. Le Roy, "Synthesis of broadband negative group delay active circuits", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2177-2180, Jun. 2007. https://doi.org/10.1109/MWSYM.2007.380357
  16. H. Noto, K. Yamauchi, M. Nakayama, and Y. Isota, "Negative Group Delay Circuit for Feed- Forward Amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1103-1106, Jun. 2007. https://doi.org/10.1109/MWSYM.2007.380286
  17. H. Choi, K. Song, C. -D. Kim, and Y. Jeong, "Synthesis of negative group delay time circuit", in Asia-Pacific Microw. Conf. Dig., pp. B5-08, 2008.
  18. H. Choi, Y. Kim, Y. Jeong, and C. -D. Kim, "Synthesis of reflection type negative group delay circuit using transmission line resonator", in Proc. 39th Eur. Microw. Conf. Sep., pp. 902-905, 2009.
  19. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hill Book Co., New York, N.Y. 1964.
  20. T. Ogawa, et al., "High efficiency feed-forward amplifier using RF predistortion linearizer and the modified Doherty amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 537-540, 2004. https://doi.org/10.1109/MWSYM.2004.1336034
  21. J. Yoon, C. Seo, "Improvement of broadband feedforward amplifier using photonic bandgap", IEEE Microw. Wireless Compon. Lett., vol. 11, no. 11, Nov. 2001. https://doi.org/10.1109/7260.966038
  22. K. J. Parsons, P. B. Kenington, "The efficiency of a feedforward amplifier with delay loss", IEEE Trans. Veh. Technol., vol. 43, pp. 407-412, May 1994. https://doi.org/10.1109/25.293658
  23. K. J. Parsons, P. B. Kenington, "Effect of delay mismatch on a feedforward amplifier", IEE Proc. Circuits Devices Syst., vol. 141, no. 2, pp. 140-144, Apr. 1994. https://doi.org/10.1049/ip-cds:19941008
  24. K. Horiguchi, et al., "A high efficiency feedforward amplifier with a series diode linearizer for cellular base stations", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 797-800, 2001. https://doi.org/10.1109/MWSYM.2001.967012