• Title/Summary/Keyword: Efficiency Enhancement

Search Result 1,134, Processing Time 0.034 seconds

Comparison of the $SO_2$ Removal Efficiency by Mixing Enhancement Shape (혼합 촉진 장치의 형상에 따른 탈황효율 비교)

  • Chung, Jin-Do;Kim, Jang-Woo;Bae, Young-Peel
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The aim of this study is to research applicable possibility of DSI (Dry Sorbent Injection) technique in $SO_2$ removal process using lab-scale facility based on 500MW in capacity coal-fired thermal power plant operated by South Korea N. Power Co., Ltd. To increase the $SO_2$ removal efficiency, it is considered the mixing enhancement as different shapes called lobed-plate and stepplate tested ultimately for optimum shape. Also it tested to analysis $SO_2$ removal efficiency by numbers of injection holes. At experimental it showed the $SO_2$ removal efficiency is higher using mixing enhancement than not installed mixing enhancement and case on the step-plate was shown the most $SO_2$ removal efficiency. Also, $SO_2$ removal efficiency was higher recording which will increase the injection holes case on not installed mixing enhancement. But, the $SO_2$ removal efficiency was higher 4 injection holes case on installed mixing enhancement.

A Study on the Desulfurization Efficiency as a Variation of Flow Field Applyed a Mixing Enhancement Apparatus (혼합촉진장치 적용시 유동장 변화에 의한 탈황효율 연구)

  • Chung, J.D.;Kim, J.W.;SeomMun, J.
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.177-181
    • /
    • 2010
  • This paper has designed a mixing enhancement apparatus called Lobed-plate and Step-plate and comparatively calculated desulfurization efficiency of when its shape was changed. The parameters used at this time were the shape, SR ratio and the number of nozzles of the mixing enhancement apparatus and comparatively analyzed desulfurization efficiency according to these parameters. As a result, the Step-plate appeared as more highly by around 4% than Lobed-plate in desulfurization efficiency according to the shape of the mixing promotion apparatus, and when the desulfurization efficiency as a SR ratio is considered, it appeared highly by an average of 5% when the SR ratio is 3 rather than 2. As a result of comparing desulfurization efficiency by fixing the SR ratio and setting the number of nozzles as 4 pieces and 6 pieces, there was no big change in desulfurization efficiency when the SR ratio is 2, but it could be confirmed to improve by around 5% when the SR ratio is 3 when time passed 8 seconds.

ANALYSIS OF THE ENHANCEMENT OF COOLING EFFICIENCY OF A VEHICLE IN THE ENGINE ROOM (차량 엔진룸에서의 냉각효율 향상에 관한 해석)

  • Lee Dong-Ryul
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.55-62
    • /
    • 2005
  • Flow and temperature fields of a mid-size vehicle engine room are examined numerically to analyze the enhancement of cooling efficiency of several different design cases in a front body shape. The wall temperatures of a radiator and an engine parte are utilized to predict the effects of engine cooling on the thermal environment and the cooling efficiency in an engine room. The analyzed results are the mass flow rate at the upper and lower inlets, in the radiator, and the condenser. It is shown that the shape of the front end, lay-out of the engine parts, and the presence of the undercover greatly influence the flow and temperature fields, and the enhancement of cooling efficiency in the engine room.

Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films (강유전 고분자 박막을 이용한 유기고분자 태양전지에서의 효율 증대)

  • Park, Jayoung;Jung, Chi Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.126-132
    • /
    • 2017
  • The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.

CNTs Electric Field Enhancement of CIGS Solar Cells

  • Han, Seong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.67-67
    • /
    • 2011
  • Compound semiconductor/CNTs composites have shown considerably improved efficiency improvement in photovoltaic devices, which is often attributed to two different factors. One is the formation of efficient electronic energy cascade structures. The other effect of CNTs on the performance of photovoltaic devices is the decrement of interfacial resistance. The interfacial resistances at n-type/ p-type materials and/or n-type materials/TCO electrode are reduced by an outstanding electrical property of CNTs. In addition to the effects of CNTs, we report the third reason for increment of efficiency in photovoltaic devices by CNT's well-known electrical field enhancement effects. The improved ${\beta}$ values in reverse-FE currents of CIGS electrode with SWNTs layers indicate the enhancement of electrical field in photovoltaic devices, which implies the acceleration of the electron transfer rate in the cell. Due to the formation of an efficient electronic energy cascade structure and the decrease of the interfacial resistance as well as the improvement of the electrical field in the photovoltaic devices, the power conversion efficiency of electrochemically deposited superstrate-type CIGS solar cells was increased 24.3% in the presence of SWNTs and showed 10.40% conversion efficiency.

  • PDF

On-chip Smart Functions for Efficiency Enhancement of MMIC Power Amplifiers for W-CDMA Handset Applications

  • Youn S. Noh;Kim, Ji H.;Kim, Joon H.;Kim, Song G.;Park, Chul S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • New efficiency enhancement techniques have been devised and implemented to InGaP/GaAs HBT MMIC power amplifiers for W-CDMA mobile terminals applications. Two different types of bias current control circuits that select the efficient quiescent currents in accordance with the required output power levels are proposed for overall power efficiency improvement. A dual chain power amplifier with single matching network composed of two different parallel-connected power amplifier is also introduced. With these efficiency enhancement techniques, the implemented MMIC power amplifiers presents power added efficiency (PAE) more than 14.8 % and adjacent channel leakage ratio(ACLR) lower than -39 dBc at 20 dBm output power and PAE more than 39.4% and ACLR lower than -33 dBc at 28 dBm output power. The average power usage efficiency of the power amplifier is improved by a factor of more than 1.415 with the bias current control circuits and even up to a factor of 3 with the dual chain power amplifier.

Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings (유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과)

  • Lee, Tae-Soo;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.519-525
    • /
    • 2012
  • Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

Efficiency enhancement mechanism in organic light-emitting devices with multiple heterostructures acting as a hole transport layer

  • Han, S.M.;Lee, K.S.;Choo, D.C.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1451-1453
    • /
    • 2007
  • The electrical and the optical properties of organic light-emitting devices (OLEDs) with or without multiple heterostructures acting as a hole transport layer were investigated. The efficiency enhancement mechanism in the OLEDs with multiple heterostructures is described on the basis of the electrical and the optical results.

  • PDF

Demand Side Management for Efficiency Enhancement of District Heating (지역난방의 효율향상을 위한 수요관리)

  • Kim, Young-Il;Kang, Byung-Ha;Choi, Sung-Ho;Kim, Yong-Ryeol;Kim, In-Taek;Jeon, Ho-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.258-263
    • /
    • 2006
  • In this study, demand side management for efficiency enhancement of district heating has been investigated. Objectives of demand side management of district heating are classified and analyzed. Foreign and domestic examples are studied. Evaluation methods of demand side management of district heating are studied. Applications and expected effect of the results are presented. Finally directions for demand side management of district heating efficiency enhancement are suggested.

  • PDF

Improved Energy Conversion Efficiency of Dye-sensitized Solar Cells Fabricated using Open-ended TiO2 Nanotube Arrays with Scattering Layer

  • Rho, Won-Yeop;Chun, Myeoung-Hwan;Kim, Ho-Sub;Hahn, Yoon-Bong;Suh, Jung Sang;Jun, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1165-1168
    • /
    • 2014
  • We prepared dye-sensitized solar cells (DSSCs) with enhanced energy conversion efficiency using open-ended $TiO_2$ nanotube arrays with a $TiO_2$ scattering layer. As compared to closed-ended $TiO_2$ nanotube arrays, the energy conversion efficiency of the open-ended $TiO_2$ nanotube arrays was increased from 5.63% to 5.92%, which is an enhancement of 5.15%. With the $TiO_2$ scattering layer, the energy conversion efficiency was increased from 5.92% to 6.53%, which is an enhancement of 10.30%. After treating the open-ended $TiO_2$ nanotube arrays with $TiCl_4$, the energy conversion efficiency was increased from 6.53% to 6.89%, a 5.51% enhancement, which is attributed to improved light harvesting and increased dye adsorption.