Effect of Acute High-intensive Swimming Exercise on Blood Electrolytes and Metabolites

단기간 고강도의 수영운동이 혈액 이온 및 대사산물에 미치는 영향

  • Kim, Shang-Jin (College of Veterinary Medicine, Chonbuk National University) ;
  • Park, Hye-Min (College of Veterinary Medicine, Chonbuk National University) ;
  • Shin, Se-Rin (College of Veterinary Medicine, Chonbuk National University) ;
  • Jeon, Seol-Hee (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Jin-Shang (Korean Zoonoses Research Institute, Chonbuk National University) ;
  • Kang, Hyung-Sub (Center for the Development of Healthcare Technology, Chonbuk National University)
  • 김상진 (전북대학교 수의과대학) ;
  • 박혜민 (전북대학교 수의과대학) ;
  • 신세린 (전북대학교 수의과대학) ;
  • 전설희 (전북대학교 수의과대학) ;
  • 김진상 (전북대학교 인수공통전염병연구소) ;
  • 강형섭 (전북대학교 헬스케어기술개발사업단)
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

Magnesium ($Mg^{2+}$) is an essential co-factor for over 325 physiological and biochemical processes so that plays a central role of neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, vasomotor tone, and blood pressure significantly related to physical performance. However, only limited information on blood ionized $Mg^{2+}$ ($iMg^{2+}$) regarding to physical exercise is available and the data from blood total $Mg^{2+}$ detection are inconsistent. This present study investigated the changes of blood $iMg^{2+}$ correlated with metabolic demands during acute high-intensive exhaustive physical exercise in rats. After exhausted swimming (3-4 hours), blood pH, glucose, $HCO_3{^-}$, oxygen and ionized $Ca^{2+}$ ($iCa^{2+}$) were significantly decreased, whereas lactate, carbon dioxide, $iMg^{2+}$, ionized $Na^+$ and ionized $K^+$ were significantly increased. During the exhausted swimming, the changes in $iMg^{2+}$ showed a significant negative correlation with changes in pH, glucose, $HCO_3^-$ and $iCa^{2+}$, however a significant negative correlation with changes in lactate and anionic gap. It is concluded that the acute high-intensive exhaustive physical exercise could produced hypermagnesemia, an increase in blood $iMg^{2+}$ via stimulation of $iMg^{2+}$ efflux following increase in intracellular $iMg^{2+}$ from muscle induced by metabolic and respiratory acidosis.

마그네슘($Mg^{2+}$)은 325 개 이상의 생리적 및 생화학적 과정에 필수적인 조효소이며 신경활성, 심장근 감수성, 신경근 전달, 근수축, 혈관운동 긴장과 혈압 등의 신체활동과 관련된 일련의 과정에서 중요한 역할은 한다. 하지만 신체활동과 관련된 혈액 이온화 $Mg^{2+}$ ($iMg^{2+}$)에 관한 보고는 거의 없을 뿐만 아니라 혈액 총 $Mg^{2+}$을 측정한 연구결과들은 논란의 여지가 있다. 대사적 요구가 증가하는 단기간의 고강도 운동에서 혈액 $iMg^{2+}$의 변화를 측정하였다. 고강도의 수영운동 후에 혈액 산도, 혈당, 중탄산염, 산소 및 칼슘은 감소한 반면, 젖산, 이산화탄소, $iMg^{2+}$, 나트륨, 칼륨은 유효한 증가를 보였다. 고강도 수영에서 혈액 $iMg^{2+}$의 변화는 혈액 산도, 혈당, 중탄산염과 칼슘의 변화와는 역관계의 상관을 보인 반면, 젖산과 음이온차와는 정관계의 유의한 상관을 보였다. 이 결과는 단기간 고강도의 수영운동이 고마그네슘혈증을 야기할 수 있고 이는 대사성 및 호흡성 산증에 의한 근육내 $iMg^{2+}$의 증가에 수반하는 근육에서의 $iMg^{2+}$ 유출의 증가에 의한 것으로 판단된다.

Keywords

References

  1. Ben Rayana MC, Burnett RW, Covington AK, D'Orazio P, Fogh-Andersen N, Jacobs E, Kulpmann WR, Kuwa K, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO, Ritter C, St John A; International Federation of Clinical Chemistry and Laboratory Medicine (IFCC); IFCC Scientific Division Committee on Point of Care Testing. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med 2008; 46: 21-26. https://doi.org/10.1515/CCLM.2008.001
  2. Berlin D, Aroch I. Concentrations of ionized and total magnesium and calcium in healthy horses: effects of age, pregnancy, lactation, pH and sample type. Vet J 2009; 181: 305-311. https://doi.org/10.1016/j.tvjl.2008.03.014
  3. Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 2003; 33: 407-426. https://doi.org/10.2165/00007256-200333060-00003
  4. Bohl CH, Volpe SL. Magnesium and exercise. Crit Rev Food Sci Nutr 2002; 42: 533-563. https://doi.org/10.1080/20024091054247
  5. Brainard BM, Campbell VL, Drobatz KJ, Perkowski SZ. The effects of surgery and anesthesia on blood magnesium and calcium concentrations in canine and feline patients. The effects of surgery and anesthesia on blood magnesium and calcium concentrations in canine and feline patients. Vet Anaesth Analg 2007; 34: 89-98. https://doi.org/10.1111/j.1467-2995.2006.00300.x
  6. Hopper K, Rezende ML, Haskins SC. Assessment of the effect of dilution of blood samples with sodium heparin on blood gas, electrolyte, and lactate measurements in dogs. Am J Vet Res 2005; 66: 656-660. https://doi.org/10.2460/ajvr.2005.66.656
  7. Hurcombe SD, Toribio RE, Slovis NM, Saville WJ, Mudge MC, Macgillivray K, Frazer ML. Calcium regulating hormones and serum calcium and magnesium concentrations in septic and critically ill foals and their association with survival. J Vet Intern Med 2009; 23: 335-343. https://doi.org/10.1111/j.1939-1676.2009.0275.x
  8. Kim SJ, Kang HS, Kang MS, Yu X, Park SY, Kim IS, Kim NS, Kim SZ, Kwak YG, Kim JS. alpha(1)-Agonists-induced $Mg^{2+}$ efflux is related to MAP kinase activation in the heart. Biochem Biophys Res Commun 2005; 333: 1132-1118. https://doi.org/10.1016/j.bbrc.2005.06.022
  9. Kim SJ, Cho IG, Kang HS, Kim JS. pH-dependent modulation of intracellular free magnesium ions with ion-selective electrodes in papillary muscle of guinea pig. J Vet Sci 2006; 7: 31-36. https://doi.org/10.4142/jvs.2006.7.1.31
  10. Kim SJ, Kang HS, Lee MY, Lee SJ, Seol JW, Park SY, Kim IS, Kim NS, Kim SZ, Kwak YG, Kim JS. Ketamine-induced cardiac depression is associated with increase in [$Mg^{2+}$]i and activation of p38 MAP kinase and ERK 1/2 in guinea pig. Biochem Biophys Res Commun 2006; 349: 716-722. https://doi.org/10.1016/j.bbrc.2006.08.082
  11. Kummerow FA, Mahfouz M, Zhou Q. Cholesterol metabolism in human umbilical arterial endothelial cells cultured in low magnesium media. Magnes Res 1997; 10: 355-360.
  12. Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. BioMetals 2002; 15: 203-210. https://doi.org/10.1023/A:1016058229972
  13. Matthiesen G, Olofsson K, Rudnicki M. Influence of blood sampling techniques on ionized magnesium level. Scand J Clin Lab Invest 2002; 62: 565-567. https://doi.org/10.1080/003655102764654295
  14. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int 1997; 52: 1180-1195. https://doi.org/10.1038/ki.1997.443
  15. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exerciseinduced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: 502-516. https://doi.org/10.1152/ajpregu.00114.2004
  16. Romani AM, Maguire ME. Hormonal regulation of $Mg^{2+}$ transport and homeostasis in eukaryotic cells. Biometals. 2002; 15: 271-283. https://doi.org/10.1023/A:1016082900838
  17. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26. https://doi.org/10.1016/S0009-8981(99)00258-2
  18. Unterer S, Gerber B, Glaus TM, Hässig M, Reusch CE. Evaluation of an electrolyte analyser for measurement of concentrations of ionized calcium and magnesium in cats. Vet Res Commun 2005; 29: 647-659. https://doi.org/10.1007/s11259-005-3301-1
  19. Wang S, McDonnell EH, Sedor FA, Toffaletti JG. pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 2002; 126: 947-950.
  20. Weiss D, Burger D, Weishaupt MA, Fakler A, Spichiger UE, Giese L, Liesegang A, Wanner M, Riond JL. Effects of a 61.7 km ride on magnesium and calcium homeostasis in well trained endurance horses. J Equi Vet Sci 2002; 22: 77-83. https://doi.org/10.1016/S0737-0806(02)70093-2