References
-
Xu J., Mullins D. R, and Overbury S.H., "CO Desorption and Oxidation on
$CeO_2$ -supported Rh: Evidence for Two Types of Rh Sites," J. Catal., 243(1). 158-164 (2006). https://doi.org/10.1016/j.jcat.2006.07.008 -
Wang F., and Lu G., "High performance Rare Earth Oxides
$LnO_x$ (Ln = La, Ce, Nd, Sm and Dy)-Modified Pt/$SiO_2$ Catalysts for CO Oxidation in the Presence of$H_2$ ," J. Power Sources, 181(1), 120-126 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.040 -
Xua G., and Zhang Z.-G., "Preferential CO Oxidation on Ru/
$Al_2O_3$ Catalyst: An Investigatio.n by Considering the Simultaneously Involved Methanation," J. Power Sources, 157(1), 64-77 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.028 - van Giezen J.C., van den Berg F.R., Kleinen J.L., van Dillen A.J., and Geus J.W., "The Effect of Water on the Activity of Supported Palladium Catalysts in the Catalytic Combustion of Methane," Catal. Today, 47(1-4), 287-293 (1999). https://doi.org/10.1016/S0920-5861(98)00309-5
- Wang F., and Lu G., "Hydrogen Feed Gas Purification over Bimetallic Cu-Pd Catalysts-Effects of Copper Precursors on CO oxidation," Inter. J. Hydrogen. Energ., 2010, in press.
- Haruta M., Yamada N., Kobayashi T., and lijima S., "Gold Catalysts prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide," J. Catal., 115(2), 301-309 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
- Hasegawa Y.-I., Maki R.-U., Sano M., and Miyake T., "Preferential Oxidation of CO on Copper-containing Manganese Oxides," Appl. Catal. A: Gen., 371(1-2), 67-72 (2009). https://doi.org/10.1016/j.apcata.2009.09.028
- Morales M.R, Barbero. B.P., and Cadus L.E., "Evaluation and Characterization of Mn-Cu Mixed Oxide Catalysts for Ethanol Total Oxidation: Influence of Copper Content," Fuel, 87(7), 1177-1186 (2008). https://doi.org/10.1016/j.fuel.2007.07.015
-
Mai H., Mengfei L., and Ping F., "Characterization of CuO Species and Thermal Solid-Solid Interaction in CuO/
$CeO_2-Al_2O_3 $ Catalyst by In-Situ XRD, Raman Spectroscopy and TPR," J. Rare Earths, 24(2), 188-192 (2006). https://doi.org/10.1016/S1002-0721(06)60091-4 -
Craciun R., Nentwick B., Hadjiivanov K., and Knozinger H., "Structure and Redox Properties of
$MnO_x$ /Yttrium-stabilized Zirconia (YSZ) Catalyst and its used in CO and$CH_4$ Oxidation," Appl. Catal. A: Gen., 243(1), 67-79 (2003). https://doi.org/10.1016/S0926-860X(02)00538-0 -
Xingyi W., Qian K., and Dao L., "Catalytic Combustion of Chlorobenzene over
$MnO_x-CeO_2 $ mixed Oxide Catalysts," Appl. Catal. B: Environ., 86(3-4), 166-175 (2009). https://doi.org/10.1016/j.apcatb.2008.08.009 -
Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., and Shen W., "
$MnO_x-CeO_2 $ Mixed Oxide Catalysts for Complete Oxidation of Formaldehyde: Effect of Preparation Method and Calcination Temperature," Appl. Catal. B: Environ., 62(3-4), 265-273 (2006). https://doi.org/10.1016/j.apcatb.2005.08.004 - Hutchings G.J., Mirzaei A.A., Joyner R. W., Siddiqui M.R.H., and Taylor S.H., "Effect of Preparation Conditions on the Catalytic Performance of Copper Manganese Oxide Catalysts for CO Oxidation," Appl. Catal. A: Gen., 166(1), 143-152 (1998). https://doi.org/10.1016/S0926-860X(97)00248-2
- Lee H.Y., Manivannan, V., and Goodenough, J.B., "Supercapacitor Behavior with KCI Electrolyte," J. Solid State Chem., 144(1), 220-223 (1999). https://doi.org/10.1006/jssc.1998.8128
- Lee H.Y., V. Manivannan, and Goodenough, J.B., "Electrochemical Capacitors with KCl Electrolyte," C. R. Acad. Sci. Paris, t. 2, SCrie II c, p. 565-577 (1999).
- Hasegawa Y., Fukumoto K., Ishima T., Yamamoto H., Sano M., and Miyake T., "Preparation of Copper-containing Mesoporous Manganese Oxides and their Catalytic Performance for CO Oxidation," Appl. Catal. B: Environ., 89(3-4), 420-424 (2009). https://doi.org/10.1016/j.apcatb.2008.12.023
- PaIDey S., Gedevanishvili S., Zhang W., and Rasouli F., "Evaluation of a Spinel Based Pigment System as a CO Oxidation Catalyst," Appl. Catal, B: Environ., 56(3), 241-250 (2005). https://doi.org/10.1016/j.apcatb.2004.09.013
-
Xu R., Wang X., Wang D., Zhou K., and Li Y., "Surface Structure Effects in Nanocrystal
$MnO_2$ and Ag/$MnO_2$ Catalytic Oxidation of CO," J. Catal., 237(2), 426-430 (2006). https://doi.org/10.1016/j.jcat.2005.10.026 - Morales M.R., Barbero B.P., and Cadus L.E., "Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts," Appl. Calal. B: Environ., 67(3-4), 229-236 (2006). https://doi.org/10.1016/j.apcatb.2006.05.006
- Reddy A.S., and Gopinath C.S., C. S., "Selective OrthoMethylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts," J. Catal., 243(2), 278-291 (2006). https://doi.org/10.1016/j.jcat.2006.07.014
- Tanaka Y. Utaka T., Kikuchi R., Takeguchi T., Sasaki K., and Eguchi K., "Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalysts Prepared via Spinel-type Oxide," J. Catal., 215(2), 271-278 (2003). https://doi.org/10.1016/S0021-9517(03)00024-1
- Kramer M., Schmidt T., Stowe K., and Maier W.F., "Structural and Catalytic Aspects of Sol-Gel Derived Copper Manganese Oxides as Low-temperature CO Oxidation Catalyst," Appl. Catal. A: Gen., 302(2), 257-263 (2006). https://doi.org/10.1016/j.apcata.2006.01.018
- Fortunato. G., Oswald H. R., and Reller A., "Spinel-type Oxide Catalysts for Low Temperature CO Oxidation Generated by Use of an Ultrasonic Aerosol Pyrolysis Process," J. Mater. Chem., 11(3), 905-911 (2001). https://doi.org/10.1039/b007306g
-
Hamoudi S., Larachi F., Adnot A., and Sayari A., "Characterization of Spent
$MnO_2/CeO_2 $ Wet Oixdation Catalyst by TPO-MS, XPS, and S-SIMS," J. Catal. 185(2), 333-344 (1999) . https://doi.org/10.1006/jcat.1999.2519 -
Zhu J., and Gao Q., "Mesoporous
$MCo_2O_4$ (M = Cu, Mn and Ni) Spinels: Structural Replication, Characterization and Catalytic Application in CO Oxidation," Miropor. Mesopor. Mater., 124(1-3), 144-152 (2009). https://doi.org/10.1016/j.micromeso.2009.05.003 - Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., "Combined Steam Reforming of Methanol over Cu-Mn Spinel Oxide Catalysts," J. Catal., 251(1), 7-20 (2007). https://doi.org/10.1016/j.jcat.2007.07.025
- Wang L.-C., Liu Q., Huang X.-S., Liu Y.-M., Cao Y., and Fan K.-N., "Gold Nanoparticles Supported on Manganese Oxides for Low-temperature CO Oxidation," Appl. Catal. B: Environ., 88(1-2), 204-212 (2009). https://doi.org/10.1016/j.apcatb.2008.09.031
-
Zhu P., Li J., ZuO S., and Zhou R., "Preferential Oxidation Properties of CO in Excess Hydrogen over CuO-
$CeO_2$ Catalyst prepared by Hydrothermal Method," Appl. Sur. Sci., 255(5), 2903-2909 (2009). -
Chen. Y.-Z., Liaw, B,-J., and Huang, C.-W., "Selective Oxidation of CO in Excess Hydrogen over
$CuO/Ce_xSn_{1-x}O_2$ Catalysts," Appl. Catal. A: Gen., 302(2), 168-176 (2006). https://doi.org/10.1016/j.apcata.2005.12.032 -
Lee, H. C., and Kim, D. H. "Kinetics of CO and
$H_2$ Oxidation over CuO-$CeO_2$ Catalyst in$H_2$ Mixtures with$CO_2$ and$H_2O$ ," Catal. Today, 132(1-4), 109-116 (2008). https://doi.org/10.1016/j.cattod.2007.12.028 -
Wu, Z., Zhu, H.. Qin, Z.., Wang, H., Ding, J., Huang, L. and Wang, J., "CO Preferential Oxidation in
$H_2$ -rich Stream over a CuO/$CeO_2$ Catalyst with High$H_2O$ and$CO_2$ tolerance," Fuel. 2010 in press. -
Avgouropoulos, G., and Ioannides, T., "Selective CO oxidation over CuO-
$CeO_2$ " Catalysts prepared via the Urea-Nitate Combustion Method," Appl. Catal. A: Gen., 244(1), 155-167 (2003). https://doi.org/10.1016/S0926-860X(02)00558-6 -
Park, J. W., Jeong, J. H., Woon, W. L., and Rhee, Y. W., "Selective Oxidation of Carbon Monoxide in Hydrogen-Rich Stream over Cu-Ce/
$\gamma$ -$Al_2O_3$ Catalysts promoted with Cobalt in a Fuel Processor for Proton Exchange Membrane Fuel Cells," J. Power Sources, 132(1-2), 18-28 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.059