DOI QR코드

DOI QR Code

Effect of Operating Variables on the Morphology of Precipitated Calcium Carbonate in a Slurry Bubble Reactor

슬러리 기포탑 반응기에서 침강성 탄산칼슘의 모폴로지에 대한 조업변수들의 영향

  • Hwang, Jung-Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Yoong (Department of Chemical Engineering, Dankook University) ;
  • Lee, Dong-Hyun (Department of Chemical Engineering, Sungkyunkwan University)
  • 황정우 (성균관대학교 화학공학과) ;
  • 이융 (단국대학교 화학공학과) ;
  • 이동현 (성균관대학교 화학공학과)
  • Received : 2010.04.12
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

Effects of $Ca(OH)_2$ concentration (0.16~0.64 wt%), surfactant concentration (2~16 wt%), total volumetric flow rate (3~6 L/min) and $CO_2$ volume fraction $(0.3{\sim}0.6)$ on morphology, crystal structure, mean particle diameter, aggregation and specific surface area of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor ($0.11\;m-ID{\times}1.0\;m-high$) with a internal tube ($0.04\;m-ID{\times}1.0\;m-high$h). The reaction time of $CaCO_3$ synthesis decreased with adding Dispex N40 of the anionic surfactant. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the single crystal of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt %) and the concentration of Dispex N40 (2 wt%). The mean particle size of $CaCO_3$ varied with adding Dispex N40. In addition, the specific surface area of $CaCO_3$ increased with adding of surfactant (2 wt%) from $35m^2/g$ to $44m^2/g$ at the volumetric flow rate of $CO_2$ (0.9 L/min) and the concentration of $Ca(OH)_2$(0.64 wt %).

슬러리 기포탑을 이용하여 수산화칼슘 농도(0.16~0.64 wt%), 계면활성제 농도(2~16 wt%), 총 부피유량(3~6 L/min) 및 $CO_2$ 유량의 부피분율(0.3~0.6)이 탄산칼슘의 morphology, 결정구조, 입자의 크기, 입자 간의 응집화, 비표면적에 미치는 영향을 알아보았다. 실험에 사용한 반응기는 높이가 1.0 m이고 직경이 0.11m, 그리고 중앙에는 직경 4 cm인 튜브가 들어있는 슬러리 기포탑이다. 실험에 사용한 음이온 계면활성제 Dispex N40은 탄산칼슘 합성에 있어 반응 속도에 영향을 주어 반응 종결 시간을 감소시켰다. Dispex N40의 농도가 2 wt%일 때 수산화칼슘의 포화농도인 0.16 wt%에서 이산화탄소의 유량에 따른 침강성 탄산칼슘의 morphology를 살펴보면 반응 속도가 증가할수록 결정의 형태는 단일 결정으로 존재하는 입자들이 많아졌다. Dispex N40은 탄산칼슘의 crystal의 성장과 입자와 입자간의 응집 현상에 영향을 주어 탄산칼슘의 평균 입도를 변화시켰다. 또한 $0.9 L/min\;CO_2$ 유량에서 수산화칼슘의 농도가 0.64 wt%일 때 2 wt%의 계면활성제 첨가로 인해 비표면적을 $35m^2/g$에서 $44m^2/g$로 크게 증가시켰다.

Keywords

References

  1. Matahwa, H., Ramiah, V., and Sanderson, R. D., "Calcium Carbonate Crystallization in the Presence of Modified Polysaccharides and Linear Polymeric Additives," J. Cryst. Growth, 310(21), 4561-4569 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.089
  2. Ahn, J. H., Lee, J. S., Joo, S. M., Kim, H. S., Kim, J. K., Han, C., and Kim, H., "Synthesis of Precipitated Calcium Carbonate in $Ca(OH)_2-CO_2-H_2O $System by the Continuous Drop Method of $Ca(OH)_2$ Slurry," J. Korean Ceram. Soc., 39(4), 327-335 (2002). https://doi.org/10.4191/KCERS.2002.39.4.327
  3. Park, M. J., Ahn, J, H., Lee, H. L., and Kim, H., "Study of Dispersion Stability of Precipitated Calcium Carbonate," J. Korean Ceram. Soc., 38(4), 343-359 (2001).
  4. Han, H, K., Kim, B. M., and Kim, J. A, "Influence of Temperture and PAA (PolyAcriclic Acid) Solution in the Formation of Calcium Carbonate Crystal," Korean Chem. Eng. Res., 46(6), 1052-1056 (2008).
  5. Kung, Y. C., and Park, S. B., "Preparation of Cubic-type Calcium Carbonate Particles from High Concentration Calcium Hydroxide Suspension by Controlling Hydration Temperature of Calcium Oxide," Korean Chem. Eng. Res., 35(6), 846-849 (1997).
  6. Kim, J. H., Kim, J. M., Kim, W. S., and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by Addition of Various Amino," Korean Chem. Eng. Res., 47(2), 213-219 (2009).
  7. Kung, Y. C., Park J., and Park, S. B., "Preparation of Needle-Like Calcium Carbonate Particles from Caicium Hydroxide Suspension by Carbonation Process," Korean Chem. Eng. Res., 35(2), 319-323 (1997).
  8. Park, J. W., Kim, J. S., Ahn, J. W., and Han, C., "A Study on Characteristics of Precipitated Calcium Carbonate by the Nozzle Spouting Method," J. Korean Ind. Chem., 17(1), 67-72 (2006).
  9. Lyu, S. G., Park, N. K., Sur, G. S., and Lee, T. J., "Influence of Polymorphs of Calcium Carbonate on Their Reactivity with H2S," J. Korean Ind. Eng. Chem., 12(2), 174-180 (2000).
  10. Lyu, S. G., Sur, G. S., and Kang, S. H., "A Study of Crystal Shape of the Precipitated Calcium Carbonate Formed in the Emulsion State," Korean Chem. Eng. Res., 35(2), 186-191 (1997).
  11. Vagenas, N. V., Gatsouli, A., and Kontoyannis, C. G., "Quantitative Analysis of Synthetic Calcium Carbonate Polymorphs Using FT-IR Spectroscopy," Talanta, 59(4), 831-836 (2003). https://doi.org/10.1016/S0039-9140(02)00638-0
  12. Xiao, J., Zhu, Y., Liu, Y., Liu, H., Zeng, Y., Xu, F., and Wang, L., "Vaterite Selection by Chitosan Gel: An Example of Polymorph Selection by Morphology of Biomacromolecules," Cryst. Growth Des., 8(8), 2887-2891 (2008). https://doi.org/10.1021/cg701233y
  13. Tong, H., Ma, W., Wang, L., Wan, P. Hu, J., and Cao, L., "Control over the Crystal Phase., Shape, Size and Aggregation of Calcium Carbonate via a L-aspartic Acid Inducing Process," Biomaterials, 25(17), 3923-3929 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.038
  14. Tsutsumi, A., Nieh, J. Y., and Fan, L. S., "Role of the Bubble Wake in Fine Particle Production of Calcium Carbonate in Bubble Column Systems," Ind. Eng. Chem. Res., 30(8), 2328-2333 (1991). https://doi.org/10.1021/ie00058a012
  15. Hwang, J. W., Lee, Y., and Lee, D. H., "Morphological Chang of Precipitated Calcium Carbonate by Reaction Rate in Bubble Column Reactor," Korean Chem. Eng. Res., 47(6), 727-733 (2009).
  16. Wachi, S., and Jones, A. G., "Effect of Gas-liquid Mass Transfer on Crystal Size Distribution during the Batch Precipitation of Calcium Carbonate," Chem, Eng. Sci., 46(12), 3289-3293 (1991). https://doi.org/10.1016/0009-2509(91)85030-2
  17. Agnihotri, R., Mahuli, S. K, Chauk, S. S., and Fan, L S., "Influence of Surface Modifiers on the Structure of Precipitated Calcium Carbonate," Ind. Eng. Chem. Res, 38(6), 2283-2291 (1999). https://doi.org/10.1021/ie9900521
  18. Wei, S. H., Mahulli, S. K, Agnihotri, R., and Fan, L. S., "High Surface Area Calcium Carbonate: Pore Structural Properties and Sulfation Characteristics," Ind. Eng. Chem. Res., 36(6), 2141-2148 (1997). https://doi.org/10.1021/ie960768l
  19. Gupta, H., and Fan, L. S., "Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas," Ind. Eng. Chem. Res., 41(16), 4035-4042 (2002). https://doi.org/10.1021/ie010867l
  20. Venkatathri, N., "Synthesis of Mesoporous Silica Nanosphere Using Different Templates," Solid State Cmmun., 143(10), 493-497 (2007). https://doi.org/10.1016/j.ssc.2007.06.017
  21. Zukal, A., Thommes, M., and Cejka, J., "Synthesis of Highly Orderd MCM-41 Silica with Spherical Particles," Micropor. Mesopor. Mat., 104(1-3), 52-58 (2007). https://doi.org/10.1016/j.micromeso.2007.01.004
  22. Huo, Q., Margolese, D. I., and Stucky, G. D., "Surfactant Control of Phases in the Synthesis of Mesoporous Silica-based Materials," Chem. Mater., 8(5), 1147-1160 (1996). https://doi.org/10.1021/cm960137h
  23. Khushalani, D, Kuperman, A., Coombs, N., and Ozin, G., "Mixed Surfactant Assemblies in the Synthesis of Mesoporous Silicas," Chem. Mater., 8(8), 2188-2193 (1996). https://doi.org/10.1021/cm9600945
  24. Ramam, N. K., Anderson, M. T., and Brinker, C. J., "Templatebased Approaches to the Preparation of Amorphous, Nanoporous Silicas," Chem. Mater., 8(8), 1682-1701 (1996). https://doi.org/10.1021/cm960138+
  25. Chen, F., Huang, L., and Li, Q., "Synthesis of MCM-48 Using Mixed Cationic-Anionic Surfactants as Templates," Chem. Mater., 9(12), 2685-2686 (1997). https://doi.org/10.1021/cm9703942
  26. Cheng, G., and Liu, C., "Preparation of Lamellar Mesoporous Silica Microspheres via SDS Templates," Mater. Chem. Phys., 77(2), 359-364 (2002).
  27. Yue, L. Zheng, Y., and Jin, D., "Spherical Porous Framework of Calcium Carbonate Prepared in the Presence of Precursor PS-PAA as Template", Micropor. Mesopor. Mat., 113(1-3), 538-541 (2008). https://doi.org/10.1016/j.micromeso.2007.12.011
  28. Wei, H, Shen, Q., Zhao, Y., Zhou, Y., Wang, D., and Xu, D., "On the Crystallization of Calcium Carbonate Modulated by Anionic Surfactants," J. Cryst. Growth, 79(3-4), (2005).
  29. Dasgupta, D., Mondal, K., and Wiltowski, T., "Robust, High Reactivity and Enhanced Capacity Carbon Dioxide Removal Agents for Hydrogen Production Applications," Int. J. Hydrogen Energ., 33(1), 303-311 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.015