Trichoderma 속에 대한 낙엽송 및 미송 추출물의 항균활성

Antifungal Activity of Wood Extracts of Larix leptolepis and Pseudotsuga menziesii againstTrichoderma spp.

  • 김지수 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 여희동 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 정지영 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 남정빈 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 김지운 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • ;
  • 최명석 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 양재경 (경상대학교 환경산림과학부(농업생명과학연구원))
  • Kim, Ji-Su (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Yeo, Hee-Dong (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Jung, Ji-Young (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Nam, Jung-Bin (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Kim, Ji-Woon (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Rinker, Danny Lee (Department of Plant Agriculture, University of Guelph) ;
  • Choi, Myung-Suk (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.) ;
  • Yang, Jae-Kyung (Div. of Environmental Forest Science(Insti. of Agric. and Life Sci.), Gyeongsang National Univ.)
  • 투고 : 2009.06.17
  • 심사 : 2009.06.20
  • 발행 : 2009.06.30

초록

본 연구는 국내산 침엽수 톱밥추출물을 이용하여 버섯의 푸른곰팡이병 방제약제 원료를 개발하고자 시도 되었으며, 푸른곰팡이병의 원인균의 하나인 Trichoderma 속 곰팡이를 대상으로 항균활성을 시험하였다. 1,000 ppm 농도의 낙엽송 열수추줄물은 Trichoderma 속 균주에 대하여 최고 20.6%의 항균활성을 나타냈다. 1,000 ppm 농도의 미송 열수추출물은 T. aggressivum에 대하여 60.3%, T. harzianum 52.2%, T. atroviride 46.8%, T.viride 46.1%의 높은 항균활성을 나타냈으며 T. koningii에서는 36.2%의 항균활성을 나타냈다. 미송 열수출물이 낙엽송 열수출물보다 Trichoderma 속 균주에 대하여 보다 효과적인 항균화합물을 함유하고 있다고 판단되었다. 낙엽송 열수출물로부터 분리된 n-hexane 분획물은 Trichoderma 속에 대하여 68.5% ~ 79.9%의 높은 항균활성을 나타냈다. 열수출물로부터 분리된 미송의 n-hexane 분획물은 T. aggressivum에 대하여 68.5%, T. atroviride에 대하여 71.4%, T. harzianum에 대하여 71.9%, T. koningii에 대하여 75.7%, T.viride에 대하여 82.3%의 높은 항균활성을 나타냈고, ethyl acetate 분획물이 n-hexane 분획물 다음으로 높은 항균활성이 나타내었다. Trichoderma 속 균주에 대한 낙엽송 및 미송 열수추출물의 항균활성은 미송 추출물이 낙엽송 추출물보다 높게 나타났지만, 낙엽송과 미송의 열수추출물로부터 분리된 n-hexane 분획물에 의한 항균활성 차이는 거의 없었다. 미송 열수추출물과 낙엽송 및 미송의 열수출물로부터 획득된 n-hexane 분획물은 Trichoderma 속에 대한 항균원료로서 사용가능성을 확인할 수 있었다.

This study was undertaken to determine inhibitory compounds from extracts of the softwood (larix leptolepis, Pseudotsuga menziesii) sawdust against Trichoderma spp. The sawdust of L. leptolepis and P. menziesii were hot water extracted, which were with fraction extracted organic solvents. The organic solvent extractions were carried out by n-hexane, methylene chloride, ethyl acetate. The antifungal activity of hot water extracts of L. leptolepis sawdust was determined to be 20.6% inhibition at a concentration of 1,000 ppm against Trichoderma spp. The antifungal activity of P. menziesii sawdust was outstanding about 60.3% against Trichoderma spp. The yields of the fractions of n-hexane soluble, methylene chloride soluble and ethyl acetate soluble from the hot water extract of L. leptolepis sawdust were 4.0%, 6.0% and 8.0%, repectively. However, the yields of the fractions of three solvents of P. menziesii sawdust were 8.0%, 13.0 and 14.0% correspondingly. The antifungal activity of n-hexane soluble fraction from hot water extracts of L. leptolepis sawdust was highest to about 68.5% to 79.9% against Trichoderma spp. compared to others. The antifungal activities of n-hexane soluble fraction from hot water extracts of P. menziesii sawdust showed 68.5%, 71.4%. 71.9%, 75.7% and 82.3% against T. aggressivum, T. atroviride, T. harzianum, T. koningii and T.viride, respectively. The n-hexane soluble fraction revealed much higher antifungal activity than the other fractions did. This study demonstrated that the n-hexane fraction of the hot water extracts of L. leptolepis and P. menziesii exhibited the greatest antifungal activity against Trichoderma spp.

키워드

참고문헌

  1. Anderson, M. G., D. M. Beyer, and P. J. Wuest. 2001. Yield comparison of hybrid Agaricus mushroom strains as a measure of resistance to Trichoderma green mold. Plant Disease 85: 731 -734. https://doi.org/10.1094/PDIS.2001.85.7.731
  2. Benner, J. P. 1993. Pesticidal compounds from higher plants. Pesticidal Science. 39: 95-102. https://doi.org/10.1002/ps.2780390202
  3. Carmel A. P., R. Kondo, K. Shimizu, and K. Skai. 1995. An examination of the anti-fungal components in the heartwood extracts of Pterocarpus indicus. Mokuzai Gakkaishi. 41: 593-597.
  4. Dennis, C. and J. Webster. 1971. Antagonistic properties of species-groups of Trichoderma I. Production of non-volatile antibiotics. British Mycological Society. 57: 25-39. https://doi.org/10.1016/S0007-1536(71)80077-3
  5. Kim, T. H., B. K. Lim, J. P. Chang, K. H. Yoon, J. Y. Lee, and J. K. Yang. 2002. Pretreatment of softwood sawdust for mycelial growth of Lentinus edodes. Mokchae Konghak 30: 109-115.
  6. Marcus, C. and P. Lichtenstein. 1979. Biologically active components of arinse: toxicity and interaction with insecticides in insects, J. Agric. Food Chem. 27: 1217-1223. https://doi.org/10.1021/jf60226a077
  7. Mark, S., F. Siegfried, W. M. Francis, and R. Schwarze. 2008. Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biological Control. 45: 111-123. https://doi.org/10.1016/j.biocontrol.2008.01.001
  8. Ospina-Giraldo, M. D., D. J. Royse, M. R. Thon, X. Chen, and C. P. Pomaine. 1998. Phylogenetic relationships of Trichoderma harzianum causing mushroom green mould in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90: 76-81. https://doi.org/10.2307/3761014
  9. Park, D. S., H. W. Kang, Y. J. Park, M. H. Lee, B. M. Lee, J. H. Hahn, and S. J. Go. 2004. DNA Profiles of Trichoderma spp. Mycobiology. in Korea. 32: 24-34. https://doi.org/10.4489/MYCO.2004.32.1.024
  10. Philp, R. W., A. Bruce, and A. G. Munro. 1995. The Effect of Water Soluble Scats Pine (Pinus sylvestris L.) and Sitka Spruce [Picea sitchensis (Bong.) Cam] Heartwood and Sapwood Extracts on the Growth of Selected Trichoderma Species. International Biodeterioration & Biodegradation. 35: 355-367. https://doi.org/10.1016/0964-8305(95)00053-9
  11. Seaby, D. A. 1987. Infection of mushroom compost by Trichoderma species. Mushroom Journal 179: 355-361.
  12. Seaby, D. A. 1989. Further observations on Trichoderma. Mushroom Journal. 197: 147-151.
  13. Shin, K. C., N. K. Kim, J. W. Cho, S. Y. Lee, and J. K. Lee. 2008. Effects of oak wood vinegars on mycelial growth, fruiting body production, and mushroom quality of Lentinula edodes. Jour. of Kor. For. Soc. 97: 34-44.
  14. Yang, J. K., B, K. Lim, G. Alm, and D. L. Rinker. 2004. Response of Trichoderma spp. and pleurotus spp. to extracts of Cypress leaves. ISMS. 16: 547-552
  15. Yun, K. W., B. S. Kil, and D. M. Han. 1993. phytotoxic and antimicrobial activity of volatile constituents of Artemisia princeps var. orientalis. J. Chem. Ecol. 19: 2757-2766. https://doi.org/10.1007/BF00980705
  16. Wink, M. and Twardowski. 1992. Allelochemicals properties of alkaloids. Effects on plants, bacteria and protein bio-synthesis, In S. J. H. Rizvi and V. Rizvi(ed). Allelopathy, Chapman Hall. pp.129-150.
  17. 성재모, 유영복, 차동열. 1998. 버섯학. pp.427-432. 교학사. 서울.
  18. 여희동, 정지영, 남정빈, 김지운, 김희규, 최명석, Glen Alm, Danny Lee Rinker, 양재경. 2009. 소나무 및 편백나무 수용성 정유를 이용한 Trichoderma속의 생장억제 활성. 목재공학. in press.