DOI QR코드

DOI QR Code

An In Vitro Study of the Antifungal Effect of Silver Nanoparticles on Oak Wilt Pathogen Raffaelea sp.

  • Kim, Sang-Woo (Division of Bio-Resources Technology, Kangwon National University) ;
  • Kim, Kyoung-Su (Division of Bio-Resources Technology, Kangwon National University) ;
  • Lamsal, Kabir (Division of Bio-Resources Technology, Kangwon National University) ;
  • Kim, Young-Jae (Division of Bio-Resources Technology, Kangwon National University) ;
  • Kim, Seung-Bin (Department of Chemistry, POSTECH) ;
  • Jung, Moo-Young (School of Technology Management, Ulsan National1nstitute of Science and Technology) ;
  • Sim, Sang-Jun (Forest Research Institute of Gangwon Province) ;
  • Kim, Ha-Sun (Forest Research Institute of Gangwon Province) ;
  • Chang, Seok-Joon (Forest Research Institute of Gangwon Province) ;
  • Kim, Jong-Kuk (Division of Forest Resources, Kangwon National University) ;
  • Lee, Youn-Su (Division of Bio-Resources Technology, Kangwon National University)
  • Published : 2009.08.31

Abstract

In this study, we investigated the antifungal activity of three different forms of silver nanoparticles against the unidentified ambrosia fungus Raffaelea sp., which has been responsible for the mortality of a large number of oak trees in Korea. Growth of fungi in the presence of silver nanoparticles was significantly inhibited in a dose-dependent manner. We also assessed the effectiveness of combining the different forms of nanoparticles. Microscopic observation revealed that silver nanoparticles caused detrimental effects not only on fungal hyphae but also on conidial germination.

Keywords

References

  1. Batra, L. R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans. Kansas Acad. Sci. 66: 213-236 https://doi.org/10.2307/3626562
  2. Bragg, P. D. and D. J. Rannie. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20: 883-889 https://doi.org/10.1139/m74-135
  3. Elchiguerra, J. L., J. L. Burt, J. R. Morones, A. Camacho- Bragado, X. Gao, H. H. Lara, and M. J. Yacaman. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 6 https://doi.org/10.1186/1477-3155-3-6
  4. Feng, Q. L., J. Wu, G. O. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668 https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  5. Fraedrich, S. W. 2008. California laurel is susceptible to laurel wilt caused by Raffaelea lauricola. Plant Disease 92: 1469 https://doi.org/10.1094/PDIS-92-10-1469A
  6. Gebhardt, H. and F. Oberwinkler. 2005. Conidial development in selected ambrosial species of the genus Raffaelea. Antonie van Leewenhoek 88: 61-66 https://doi.org/10.1007/s10482-004-7838-8
  7. Hwang, E. T., J. H. Lee, Y. J. Chae, Y. S. Kim, B. C. Kim, B. I. Sang, and M. B. Gu. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746-750 https://doi.org/10.1002/smll.200700954
  8. Ito, S., T. Kubono, N. Sahashi, and T. Yamada. 1998. Associated fungi with the mass mortality of oak trees. J. Japan For. Soc. 80: 170-175
  9. Jones, G. J. and M. Blackwell. 1998. Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol. Res. 102: 661-665 https://doi.org/10.1017/S0953756296003437
  10. Kinuura, H. 2002. Relative dominance of the model fungus, Raffaelea sp., in the mycangium and proventriculus in relation to adult stages of the oak platypodid beetle, Platypus quercivorus (Coleoptera; Platypodidae). J. For. Res. 7: 7-12 https://doi.org/10.1007/BF02762592
  11. Kinuura, H. and M. Kobayashi. 2006. Death of Quercus crispula by inoculation with adult Platypus quercivorus (Coleoptera: Platypodidae). Appl. Entomol. Zool. 41: 123-128 https://doi.org/10.1303/aez.2006.123
  12. Kuroda, K. 2001. Response of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J. Wood Sci. 47: 425-429 https://doi.org/10.1007/BF00767893
  13. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanobiotechnology. 16: 2346-2353 https://doi.org/10.1088/0957-4484/16/10/059
  14. Nel, A., T. Xia, L. M$\ddot{a}$dler, and N. Li. 2003. Toxic potential of materials at the nanolevel. Science 311: 622-627 https://doi.org/10.1126/science.1114397
  15. Samuel, U. and J. P. Guggenbichler. 2004. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents 23S1: S75- S78 https://doi.org/10.1016/j.ijantimicag.2003.12.004
  16. Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188-194 https://doi.org/10.1016/S1369-5274(99)80033-2
  17. Thurman, K. G. and C. H. P. Gerba. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control 18: 295-315 https://doi.org/10.1080/10643388909388351
  18. Yeo, S. Y., H. J. Lee, and S. H. Jeong. 2003. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 38: 2143-2147 https://doi.org/10.1023/A:1023767828656

Cited by

  1. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum vol.56, pp.3, 2009, https://doi.org/10.1139/w10-012
  2. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides vol.13, pp.6, 2009, https://doi.org/10.1007/s11051-010-0145-6
  3. Application of Silver Nanoparticles for the Control of Colletotrichum Species In Vitro and Pepper Anthracnose Disease in Field vol.39, pp.3, 2009, https://doi.org/10.5941/myco.2011.39.3.194
  4. Antimycotic Activity of Nanoparticles of MgO, FeO and ZnO on some Pathogenic Fungi : vol.2, pp.4, 2009, https://doi.org/10.4018/ijmmme.2012100105
  5. Role of nanotechnology in agriculture with special reference to management of insect pests vol.94, pp.2, 2009, https://doi.org/10.1007/s00253-012-3969-4
  6. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi vol.40, pp.1, 2012, https://doi.org/10.5941/myco.2012.40.1.053
  7. Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling vol.43, pp.16, 2009, https://doi.org/10.1080/10643389.2012.671750
  8. Botryticidal Activity of Nanosized Silver‐Chitosan Composite and Its Application for the Control of Gray Mold in Strawberry vol.78, pp.10, 2013, https://doi.org/10.1111/1750-3841.12247
  9. Myconanotechnology in agriculture: a perspective vol.29, pp.2, 2013, https://doi.org/10.1007/s11274-012-1171-6
  10. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review vol.23, pp.1, 2014, https://doi.org/10.1007/s13562-013-0204-z
  11. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/692643
  12. Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat vol.9, pp.5, 2009, https://doi.org/10.1371/journal.pone.0097881
  13. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens vol.140, pp.2, 2014, https://doi.org/10.1007/s10658-014-0399-4
  14. Raffaelea quercus-mongolicae와 Raffaelea spp. 인공접종에 의한 신갈나무 줄기에서의 병원성 평가 vol.20, pp.4, 2009, https://doi.org/10.5423/rpd.2014.20.4.270
  15. Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system vol.5, pp.87, 2009, https://doi.org/10.1039/c5ra13306h
  16. Myconanoparticles: synthesis and their role in phytopathogens management vol.29, pp.2, 2009, https://doi.org/10.1080/13102818.2015.1008194
  17. Application of Biosynthesized Silver Nanoparticles for the Control of Land SnailEobania vermiculataand Some Plant Pathogenic Fungi vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/218904
  18. Application of Biosynthesized Silver Nanoparticles for the Control of Land SnailEobania vermiculataand Some Plant Pathogenic Fungi vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/218904
  19. Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route vol.2, pp.9, 2009, https://doi.org/10.1088/2053-1591/2/9/095004
  20. Development and antibacterial performance of silver nanoparticles incorporated polydopamine-polyester-knitted fabric vol.39, pp.2, 2009, https://doi.org/10.1007/s12034-016-1180-4
  21. Silver nanoparticles: a mechanism of action on moulds vol.8, pp.12, 2009, https://doi.org/10.1039/c6mt00161k
  22. Colloidal silver nanoparticles: an effective nano-filler material to prevent fungal proliferation in bamboo vol.6, pp.100, 2009, https://doi.org/10.1039/c6ra12516f
  23. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation vol.30, pp.1, 2009, https://doi.org/10.1080/13102818.2015.1106339
  24. Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum vol.11, pp.3, 2009, https://doi.org/10.1371/journal.pone.0150855
  25. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application vol.11, pp.1, 2009, https://doi.org/10.1186/s11671-016-1311-2
  26. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani vol.6, pp.2, 2009, https://doi.org/10.1007/s13205-016-0515-6
  27. Toxicity of Ag Nanoparticles Synthesized Using Stearic Acid from Catharanthus roseus Leaf Extract Against Earias vittella and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti) vol.28, pp.5, 2017, https://doi.org/10.1007/s10876-017-1235-8
  28. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges vol.5, pp.None, 2009, https://doi.org/10.3389/fchem.2017.00006
  29. Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity vol.6, pp.1, 2017, https://doi.org/10.1515/gps-2016-0075
  30. Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity vol.6, pp.1, 2017, https://doi.org/10.1515/gps-2016-0075
  31. Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks vol.8, pp.None, 2009, https://doi.org/10.1146/annurev-food-041715-033338
  32. Nanotechnology: The new perspective in precision agriculture vol.15, pp.None, 2009, https://doi.org/10.1016/j.btre.2017.03.002
  33. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity vol.45, pp.7, 2009, https://doi.org/10.1080/21691401.2016.1241793
  34. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens vol.7, pp.None, 2009, https://doi.org/10.1038/srep45154
  35. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology vol.102, pp.16, 2018, https://doi.org/10.1007/s00253-018-9145-8
  36. The Future of Nanotechnology in Plant Pathology vol.56, pp.None, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
  37. The Future of Nanotechnology in Plant Pathology vol.56, pp.None, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
  38. Antifungal Activity of ZnO and MgO Nanomaterials and Their Mixtures againstColletotrichum gloeosporioidesStrains from Tropical Fruit vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/3498527
  39. Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina vol.46, pp.1, 2009, https://doi.org/10.1080/12298093.2018.1454011
  40. Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro vol.94, pp.2, 2009, https://doi.org/10.5558/tfc2018-017
  41. Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon vol.102, pp.7, 2009, https://doi.org/10.1094/pdis-10-17-1621-re
  42. Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks vol.88, pp.4, 2009, https://doi.org/10.1007/s40011-016-0791-2
  43. Nanomaterials and microbes’ interactions: a contemporary overview vol.9, pp.3, 2009, https://doi.org/10.1007/s13205-019-1576-0
  44. Mycosilver Nanoparticles: Synthesis, Characterization and its Efficacy against Plant Pathogenic Fungi vol.9, pp.2, 2009, https://doi.org/10.1007/s12668-019-0607-y
  45. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals vol.75, pp.9, 2009, https://doi.org/10.1002/ps.5348
  46. Ultra-Structural Alterations in Botrytis cinerea-The Causal Agent of Gray Mold-Treated with Salt Solutions vol.9, pp.10, 2009, https://doi.org/10.3390/biom9100582
  47. Anti-Toxoplasma Effects of Silver Nanoparticles Based on Ginger Extract: An in Vitro Study vol.7, pp.4, 2019, https://doi.org/10.5812/jamm.104248
  48. Silver Nanomaterials in Contemporary Molecular Physiology Research vol.27, pp.3, 2009, https://doi.org/10.2174/0929867325666180719110432
  49. Antimicrobial Activity of Biosynthesized Metal Nanoparticles vol.10, pp.1, 2009, https://doi.org/10.2174/2468187309666190920095734
  50. Nanomaterials: new weapons in a crusade against phytopathogens vol.104, pp.4, 2009, https://doi.org/10.1007/s00253-019-10334-y
  51. GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production vol.27, pp.None, 2009, https://doi.org/10.1016/j.btre.2020.e00496
  52. In silico prediction of silver nitrate nanoparticles and Nitrate Reductase A (NAR A) interaction in the treatment of infectious disease causing clinical strains of E. coli vol.13, pp.10, 2009, https://doi.org/10.1016/j.jiph.2020.08.004
  53. Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects vol.6, pp.4, 2020, https://doi.org/10.3390/jof6040222
  54. Screening of Endophytic Fungal Isolates Against Raffaelea quercus-mongolicae Causing Oak Wilt Disease in Korea vol.48, pp.6, 2009, https://doi.org/10.1080/12298093.2020.1830486
  55. Green Synthesized Silver Nanoparticles Mitigate Biotic Stress Induced by Meloidogyne incognita in Trachyspermum ammi (L.) by Improving Growth, Biochemical, and Antioxidant Enzyme Activities vol.6, pp.17, 2009, https://doi.org/10.1021/acsomega.1c00375
  56. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops vol.394, pp.6, 2009, https://doi.org/10.1007/s00210-021-02057-7
  57. The role of coating and size of ZnO nanoparticles on the antifungal activity against Raffaelea species vol.301, pp.None, 2009, https://doi.org/10.1016/j.matlet.2021.130314
  58. Biological control of soil borne cucumber diseases using green marine macroalgae vol.31, pp.1, 2021, https://doi.org/10.1186/s41938-021-00421-6
  59. Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? vol.268, pp.None, 2009, https://doi.org/10.1016/j.atmosenv.2021.118781
  60. Effective Inhibition of Invasive Pulmonary Aspergillosis by Silver Nanoparticles Biosynthesized with Artemisia sieberi Leaf Extract vol.12, pp.1, 2009, https://doi.org/10.3390/nano12010051
  61. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks vol.288, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.132527
  62. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity vol.288, pp.p2, 2009, https://doi.org/10.1016/j.chemosphere.2021.132533
  63. Influence of natural soil colloid’s stability on transport of copper-based nanoparticles in saturated porous media vol.17, pp.None, 2022, https://doi.org/10.1016/j.enmm.2021.100633