References
- Batra, L. R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans. Kansas Acad. Sci. 66: 213-236 https://doi.org/10.2307/3626562
- Bragg, P. D. and D. J. Rannie. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20: 883-889 https://doi.org/10.1139/m74-135
- Elchiguerra, J. L., J. L. Burt, J. R. Morones, A. Camacho- Bragado, X. Gao, H. H. Lara, and M. J. Yacaman. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 6 https://doi.org/10.1186/1477-3155-3-6
- Feng, Q. L., J. Wu, G. O. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668 https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
- Fraedrich, S. W. 2008. California laurel is susceptible to laurel wilt caused by Raffaelea lauricola. Plant Disease 92: 1469 https://doi.org/10.1094/PDIS-92-10-1469A
- Gebhardt, H. and F. Oberwinkler. 2005. Conidial development in selected ambrosial species of the genus Raffaelea. Antonie van Leewenhoek 88: 61-66 https://doi.org/10.1007/s10482-004-7838-8
- Hwang, E. T., J. H. Lee, Y. J. Chae, Y. S. Kim, B. C. Kim, B. I. Sang, and M. B. Gu. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746-750 https://doi.org/10.1002/smll.200700954
- Ito, S., T. Kubono, N. Sahashi, and T. Yamada. 1998. Associated fungi with the mass mortality of oak trees. J. Japan For. Soc. 80: 170-175
- Jones, G. J. and M. Blackwell. 1998. Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol. Res. 102: 661-665 https://doi.org/10.1017/S0953756296003437
- Kinuura, H. 2002. Relative dominance of the model fungus, Raffaelea sp., in the mycangium and proventriculus in relation to adult stages of the oak platypodid beetle, Platypus quercivorus (Coleoptera; Platypodidae). J. For. Res. 7: 7-12 https://doi.org/10.1007/BF02762592
- Kinuura, H. and M. Kobayashi. 2006. Death of Quercus crispula by inoculation with adult Platypus quercivorus (Coleoptera: Platypodidae). Appl. Entomol. Zool. 41: 123-128 https://doi.org/10.1303/aez.2006.123
- Kuroda, K. 2001. Response of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J. Wood Sci. 47: 425-429 https://doi.org/10.1007/BF00767893
- Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanobiotechnology. 16: 2346-2353 https://doi.org/10.1088/0957-4484/16/10/059
-
Nel, A., T. Xia, L. M
$\ddot{a}$ dler, and N. Li. 2003. Toxic potential of materials at the nanolevel. Science 311: 622-627 https://doi.org/10.1126/science.1114397 - Samuel, U. and J. P. Guggenbichler. 2004. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents 23S1: S75- S78 https://doi.org/10.1016/j.ijantimicag.2003.12.004
- Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188-194 https://doi.org/10.1016/S1369-5274(99)80033-2
- Thurman, K. G. and C. H. P. Gerba. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control 18: 295-315 https://doi.org/10.1080/10643388909388351
- Yeo, S. Y., H. J. Lee, and S. H. Jeong. 2003. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 38: 2143-2147 https://doi.org/10.1023/A:1023767828656
Cited by
- The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum vol.56, pp.3, 2009, https://doi.org/10.1139/w10-012
- Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides vol.13, pp.6, 2009, https://doi.org/10.1007/s11051-010-0145-6
- Application of Silver Nanoparticles for the Control of Colletotrichum Species In Vitro and Pepper Anthracnose Disease in Field vol.39, pp.3, 2009, https://doi.org/10.5941/myco.2011.39.3.194
- Antimycotic Activity of Nanoparticles of MgO, FeO and ZnO on some Pathogenic Fungi : vol.2, pp.4, 2009, https://doi.org/10.4018/ijmmme.2012100105
- Role of nanotechnology in agriculture with special reference to management of insect pests vol.94, pp.2, 2009, https://doi.org/10.1007/s00253-012-3969-4
- Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi vol.40, pp.1, 2012, https://doi.org/10.5941/myco.2012.40.1.053
- Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling vol.43, pp.16, 2009, https://doi.org/10.1080/10643389.2012.671750
- Botryticidal Activity of Nanosized Silver‐Chitosan Composite and Its Application for the Control of Gray Mold in Strawberry vol.78, pp.10, 2013, https://doi.org/10.1111/1750-3841.12247
- Myconanotechnology in agriculture: a perspective vol.29, pp.2, 2013, https://doi.org/10.1007/s11274-012-1171-6
- Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review vol.23, pp.1, 2014, https://doi.org/10.1007/s13562-013-0204-z
- Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/692643
- Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat vol.9, pp.5, 2009, https://doi.org/10.1371/journal.pone.0097881
- Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens vol.140, pp.2, 2014, https://doi.org/10.1007/s10658-014-0399-4
- Raffaelea quercus-mongolicae와 Raffaelea spp. 인공접종에 의한 신갈나무 줄기에서의 병원성 평가 vol.20, pp.4, 2009, https://doi.org/10.5423/rpd.2014.20.4.270
- Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system vol.5, pp.87, 2009, https://doi.org/10.1039/c5ra13306h
- Myconanoparticles: synthesis and their role in phytopathogens management vol.29, pp.2, 2009, https://doi.org/10.1080/13102818.2015.1008194
- Application of Biosynthesized Silver Nanoparticles for the Control of Land SnailEobania vermiculataand Some Plant Pathogenic Fungi vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/218904
- Application of Biosynthesized Silver Nanoparticles for the Control of Land SnailEobania vermiculataand Some Plant Pathogenic Fungi vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/218904
- Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route vol.2, pp.9, 2009, https://doi.org/10.1088/2053-1591/2/9/095004
- Development and antibacterial performance of silver nanoparticles incorporated polydopamine-polyester-knitted fabric vol.39, pp.2, 2009, https://doi.org/10.1007/s12034-016-1180-4
- Silver nanoparticles: a mechanism of action on moulds vol.8, pp.12, 2009, https://doi.org/10.1039/c6mt00161k
- Colloidal silver nanoparticles: an effective nano-filler material to prevent fungal proliferation in bamboo vol.6, pp.100, 2009, https://doi.org/10.1039/c6ra12516f
- Antifungal silver nanoparticles: synthesis, characterization and biological evaluation vol.30, pp.1, 2009, https://doi.org/10.1080/13102818.2015.1106339
- Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum vol.11, pp.3, 2009, https://doi.org/10.1371/journal.pone.0150855
- Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application vol.11, pp.1, 2009, https://doi.org/10.1186/s11671-016-1311-2
- Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani vol.6, pp.2, 2009, https://doi.org/10.1007/s13205-016-0515-6
- Toxicity of Ag Nanoparticles Synthesized Using Stearic Acid from Catharanthus roseus Leaf Extract Against Earias vittella and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti) vol.28, pp.5, 2017, https://doi.org/10.1007/s10876-017-1235-8
- Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges vol.5, pp.None, 2009, https://doi.org/10.3389/fchem.2017.00006
- Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity vol.6, pp.1, 2017, https://doi.org/10.1515/gps-2016-0075
- Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity vol.6, pp.1, 2017, https://doi.org/10.1515/gps-2016-0075
- Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks vol.8, pp.None, 2009, https://doi.org/10.1146/annurev-food-041715-033338
- Nanotechnology: The new perspective in precision agriculture vol.15, pp.None, 2009, https://doi.org/10.1016/j.btre.2017.03.002
- Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity vol.45, pp.7, 2009, https://doi.org/10.1080/21691401.2016.1241793
- Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens vol.7, pp.None, 2009, https://doi.org/10.1038/srep45154
- Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology vol.102, pp.16, 2018, https://doi.org/10.1007/s00253-018-9145-8
- The Future of Nanotechnology in Plant Pathology vol.56, pp.None, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
- The Future of Nanotechnology in Plant Pathology vol.56, pp.None, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
- Antifungal Activity of ZnO and MgO Nanomaterials and Their Mixtures againstColletotrichum gloeosporioidesStrains from Tropical Fruit vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/3498527
- Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina vol.46, pp.1, 2009, https://doi.org/10.1080/12298093.2018.1454011
- Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro vol.94, pp.2, 2009, https://doi.org/10.5558/tfc2018-017
- Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon vol.102, pp.7, 2009, https://doi.org/10.1094/pdis-10-17-1621-re
- Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks vol.88, pp.4, 2009, https://doi.org/10.1007/s40011-016-0791-2
- Nanomaterials and microbes’ interactions: a contemporary overview vol.9, pp.3, 2009, https://doi.org/10.1007/s13205-019-1576-0
- Mycosilver Nanoparticles: Synthesis, Characterization and its Efficacy against Plant Pathogenic Fungi vol.9, pp.2, 2009, https://doi.org/10.1007/s12668-019-0607-y
- Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals vol.75, pp.9, 2009, https://doi.org/10.1002/ps.5348
- Ultra-Structural Alterations in Botrytis cinerea-The Causal Agent of Gray Mold-Treated with Salt Solutions vol.9, pp.10, 2009, https://doi.org/10.3390/biom9100582
- Anti-Toxoplasma Effects of Silver Nanoparticles Based on Ginger Extract: An in Vitro Study vol.7, pp.4, 2019, https://doi.org/10.5812/jamm.104248
- Silver Nanomaterials in Contemporary Molecular Physiology Research vol.27, pp.3, 2009, https://doi.org/10.2174/0929867325666180719110432
- Antimicrobial Activity of Biosynthesized Metal Nanoparticles vol.10, pp.1, 2009, https://doi.org/10.2174/2468187309666190920095734
- Nanomaterials: new weapons in a crusade against phytopathogens vol.104, pp.4, 2009, https://doi.org/10.1007/s00253-019-10334-y
- GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production vol.27, pp.None, 2009, https://doi.org/10.1016/j.btre.2020.e00496
- In silico prediction of silver nitrate nanoparticles and Nitrate Reductase A (NAR A) interaction in the treatment of infectious disease causing clinical strains of E. coli vol.13, pp.10, 2009, https://doi.org/10.1016/j.jiph.2020.08.004
- Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects vol.6, pp.4, 2020, https://doi.org/10.3390/jof6040222
- Screening of Endophytic Fungal Isolates Against Raffaelea quercus-mongolicae Causing Oak Wilt Disease in Korea vol.48, pp.6, 2009, https://doi.org/10.1080/12298093.2020.1830486
- Green Synthesized Silver Nanoparticles Mitigate Biotic Stress Induced by Meloidogyne incognita in Trachyspermum ammi (L.) by Improving Growth, Biochemical, and Antioxidant Enzyme Activities vol.6, pp.17, 2009, https://doi.org/10.1021/acsomega.1c00375
- Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops vol.394, pp.6, 2009, https://doi.org/10.1007/s00210-021-02057-7
- The role of coating and size of ZnO nanoparticles on the antifungal activity against Raffaelea species vol.301, pp.None, 2009, https://doi.org/10.1016/j.matlet.2021.130314
- Biological control of soil borne cucumber diseases using green marine macroalgae vol.31, pp.1, 2021, https://doi.org/10.1186/s41938-021-00421-6
- Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? vol.268, pp.None, 2009, https://doi.org/10.1016/j.atmosenv.2021.118781
- Effective Inhibition of Invasive Pulmonary Aspergillosis by Silver Nanoparticles Biosynthesized with Artemisia sieberi Leaf Extract vol.12, pp.1, 2009, https://doi.org/10.3390/nano12010051
- Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks vol.288, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.132527
- The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity vol.288, pp.p2, 2009, https://doi.org/10.1016/j.chemosphere.2021.132533
- Influence of natural soil colloid’s stability on transport of copper-based nanoparticles in saturated porous media vol.17, pp.None, 2022, https://doi.org/10.1016/j.enmm.2021.100633