References
- Banks, A. S. 1992. A puncture wound complicated by infection with Edwardsiella tarda. J. Am. Pediatr. Med. Assoc. 82: 529- 531 https://doi.org/10.7547/87507315-82-10-529
- Casali, N., A. M. White, and L. W. Riley. 2006. Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol. 188: 441-449 https://doi.org/10.1128/JB.188.2.441-449.2006
- Gebhard, S. and G. M. Cook. 2008. Differential regulation of high-affinity phosphate transport systems of Mycobacterium smegmatis: Identification of PhnF, a repressor of the phnDCE operon. J. Bacteriol. 190: 1335-1343 https://doi.org/10.1128/JB.01764-07
- Gorelik, M., V. V. Lunin, T. Skarina, and A. Savchenko. 2006. Structural characterization of GntR/HutC family signaling domain. Protein Sci. 15: 1506-1511 https://doi.org/10.1110/ps.062146906
- Fineran, P. C., L. Everson, H. Slater, and G. P. C. Salmond. 2005. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology 151: 3833-3845 https://doi.org/10.1099/mic.0.28251-0
- Frunzke, J., V. Engels, S. Hasenbein, C. Gatgens, and M. Bott. 2008. Co- rdinated regulation of gluconate catabolism and glucose uptake in orynebacterium glutamicum by two functionally equivalent transcriptional egulators, GntR1 and GntR2. Mol. Microbiol. 190: 1335-1343
- Fujita, Y., T. Fujita, Y. Miwa, J. I. Nihashi, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261: 13744-13753
- Haine, V., A. Sinon, F. Van Steen, S. Rousseau, M. Dozot, P. Lestrate, C. Lambert, J. Letesson, and X. De Bolle. 2005. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect. Immun. 73: 5578-5586 https://doi.org/10.1128/IAI.73.9.5578-5586.2005
- Hamza, I., S. Chauhan, R. Hassett, and M. R. O'Brian. 1998. The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem. 273: 21669- 21674 https://doi.org/10.1074/jbc.273.34.21669
- Hanssler, E., T. Muller, N. Jessberger, A. Volzke, J. Plassmeier, J. Kalinowski, R. Kramer, and A. Burkovski. 2007. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76: 625-632 https://doi.org/10.1007/s00253-007-0929-5
- Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4: 172-177 https://doi.org/10.1016/S1369-5274(00)00184-3
- Hillerich, B. and J. Westpheling. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188: 7477-7487 https://doi.org/10.1128/JB.00898-06
- Hirono, I., N. Tange, and T. Aoki. 1997. Iron regulated hemolysin gene from Edwardsiella tarda. Mol. Microbiol. 24: 851-856 https://doi.org/10.1046/j.1365-2958.1997.3971760.x
- Hoskisson, P. A., S. Rigali, K. Fowler, K. C. Findlay, and M. J. Buttner. 2006. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J. Bacteriol. 188: 5014-5023 https://doi.org/10.1128/JB.00307-06
- Janda, J. M. and S. L. Abbott. 1993. Expression of an ironregulated hemolysin by Edwardsiella tarda. FEMS Microbiol. Lett. 111: 275-280 https://doi.org/10.1111/j.1574-6968.1993.tb06398.x
- Janda, J. M., S. L. Abott, S. Kroshe-Bystrom, W. K. W. Cheng, C. Powers, R. P. Kokka, and K. Tamura. 1991. Pathogenic properties of Edwardsiella species. J. Clin. Microbiol. 29: 1977-2001
- Jaques, S. and L. L. McCarter. 2006. Three new regulators of swarming in Vibrio parahaemolyticus. J. Bacteriol. 188: 2625- 2635 https://doi.org/10.1128/JB.188.7.2625-2635.2006
- Kalivoda, K. A., S. M. Steenbergen, E. R. Vimr, and J. Plumbridge. 2003. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J. Bacteriol. 185: 4806-4815 https://doi.org/10.1128/JB.185.16.4806-4815.2003
-
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{{-{\bigtriangleup}{\bigtriangleup}}CT}$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262 - Lin, J. W., H. C. Lu, H. Y. Chen, and S. F. Weng. 1997. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 239: 228-234 https://doi.org/10.1006/bbrc.1997.7461
- Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
- Miyazaki, T. and N. Kaige. 1985. Comparative histopathology of edwardsiellosis in fishes. Fish Pathol. 20: 219-227 https://doi.org/10.3147/jsfp.20.219
- Murray, E. L. and T. Conway. 2005. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J. Bacteriol. 187: 991-1000 https://doi.org/10.1128/JB.187.3.991-1000.2005
- Reizer, A., J. Deutscher, M. H. Saier, and J. Reizer. 1991. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol. Microbiol. 5: 1081-1089 https://doi.org/10.1111/j.1365-2958.1991.tb01880.x
- Rigali, S., A. Derouaux, F. Giannotta, and J. Dusart. 2002. Subdivision of the helix-turn-helix GntR family of bacterial regulators in FadR, HutC, MocR and YtrA sub-families. J. Biol. Chem. 277: 12507-12515 https://doi.org/10.1074/jbc.M110968200
- Rigali, S., H. Nothaft, E. E. Noens, M. Schlicht, S. Colson, M. Muller, et al. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61: 1237-1251 https://doi.org/10.1111/j.1365-2958.2006.05319.x
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
- Schauder, S., K. Shokat, M. G. Surette, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 463-476 https://doi.org/10.1046/j.1365-2958.2001.02532.x
- Slaven, E. M., F. A. Lopez, S. M. Hart, and C. V. Sanders. 2001. Myonecrosis caused by Edwardsiella tarda: A case report and case series of extraintestinal E. tarda infections. Clin. Infect. Dis. 32: 1430-1433 https://doi.org/10.1086/320152
-
Srinivasa Rao, P. S., Y. Yamada, and K. Y. Leung. 2003. A major catalase (KatB) that is required for
$H_2O_2$ and phagocytemediated killing in Edwardsiella tarda. Microbiology 149: 2635-2644 https://doi.org/10.1099/mic.0.26478-0 - Sun, L., J. vanderSpek, and J. R. Murphy. 1998. Isolation and characterization of iron-independent positive dominant mutants of Diphtheria toxin repressor, DtxR. Proc. Natl. Acad. Sci. U.S.A. 95: 14985-14990 https://doi.org/10.1073/pnas.95.25.14985
- Surette, M. G. and B. L. Bassler. 1999. Regulation of autoinducer production in Salmonella typhimurium. Mol. Microbiol. 31: 585-595 https://doi.org/10.1046/j.1365-2958.1999.01199.x
- Tan, Y. P., J. Zheng, S. L. Tung, I. Rosenshine, and K. Y. Leung. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151: 2301-2313 https://doi.org/10.1099/mic.0.28005-0
- Ullah, M. A. and T. Arai. 1983. Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathol. 18: 65-70 https://doi.org/10.3147/jsfp.18.65
- Vendeville, A., K. Winzer, K. Heurlier, C. M. Tang, and K. R. Hardie. 2005. Making 'sense' of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3: 383-396 https://doi.org/10.1038/nrmicro1146
- Wang, F., S. Cheng, K. Sun, and L. Sun. 2008. Molecular analysis of the fur (ferric uptake regulator) gene of a pathogenic Edwardsiella tarda strain. J. Microbiol. 46: 350-355 https://doi.org/10.1007/s12275-008-0038-x
- Wiethaus, J., B. Schubert, Y. Pfander, F. Narberhaus, and B. Masepohl. 2008. The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J. Bacteriol. 190: 487-493 https://doi.org/10.1128/JB.01510-07
- Winzer, K., K. R. Hardie, N. Burgess, N. Doherty, D. Kirke, M. T. Holden, et al. 2002. LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909-922 https://doi.org/10.1099/00221287-148-4-909
- Zhang, M., K. Sun, and L. Sun. 2008. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology 154: 2060-2069 https://doi.org/10.1099/mic.0.2008/017343-0
- Zhang, W. and L. Sun. 2007. Cloning, characterization and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831 https://doi.org/10.1128/AEM.02872-06
- Zheng, J. and K. Y. Leung. 2007. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66: 1192-1206 https://doi.org/10.1111/j.1365-2958.2007.05993.x
Cited by
- Domain analysis of the Edwardsiella tarda ferric uptake regulator vol.55, pp.5, 2009, https://doi.org/10.2323/jgam.55.351
- Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA–EsrB and nucleoid protein HhaEt vol.29, pp.6, 2009, https://doi.org/10.1016/j.fsi.2010.08.025
- Edwardsiella tarda DnaJ is a virulence-associated molecular chaperone with immunoprotective potential vol.31, pp.2, 2011, https://doi.org/10.1016/j.fsi.2011.05.001
- Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions vol.7, pp.None, 2017, https://doi.org/10.3389/fcimb.2017.00148