DOI QR코드

DOI QR Code

Regulation of the Edwardsiella tarda Hemolysin Gene and luxS by EthR

  • Fang, Wang (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhang, Min (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Hu, Yong-Hua (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhang, Wei-wei (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Sun, Li (Institute of Oceanology, Chinese Academy of Sciences)
  • Published : 2009.08.31

Abstract

Edwardsiella tarda is a pathogen with a broad host range that includes human and animals. The E. tarda hemolysin (Eth) system, which comprises EthA and EthB, is a noted virulence element that is widely distributed in pathogenic isolates of E. tarda. Previous study has shown that the expression of ethB is regulated by iron, which suggests the possibility that the ferric uptake regulator (Fur) is involved in the regulation of ethB. The work presented in this report supports the previous findings and demonstrates that ethB expression was decreased under conditions when the E. tarda Fur ($Fur_{Et}$) was overproduced, and enhanced when $Fur_{Et}$ was inactivated. We also identified a second ethB regulator, EthR, which is a transcription regulator of the GntR family. EthR represses ethB expression by direct interaction with the ethB promoter region. In addition to ethB, EthR also modulates, but positively, luxS expression and AI-2 production by binding to the luxS promoter region. The expression of ethR itself is subject to negative autoregulation; interference with this regulation by overexpressing ethR during the process of infection caused (i) drastic changes in ethB and luxS expressions, (ii) vitiation in the tissue dissemination and survival ability of the bacterium, and (iii) significant attenuation of the overall bacterial virulence. These results not only provide new insights into the regulation mechanisms of the Eth hemolysin and LuxS/AI-2 quorum sensing systems but also highlight the importance of these systems in bacterial virulence.

Keywords

References

  1. Banks, A. S. 1992. A puncture wound complicated by infection with Edwardsiella tarda. J. Am. Pediatr. Med. Assoc. 82: 529- 531 https://doi.org/10.7547/87507315-82-10-529
  2. Casali, N., A. M. White, and L. W. Riley. 2006. Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol. 188: 441-449 https://doi.org/10.1128/JB.188.2.441-449.2006
  3. Gebhard, S. and G. M. Cook. 2008. Differential regulation of high-affinity phosphate transport systems of Mycobacterium smegmatis: Identification of PhnF, a repressor of the phnDCE operon. J. Bacteriol. 190: 1335-1343 https://doi.org/10.1128/JB.01764-07
  4. Gorelik, M., V. V. Lunin, T. Skarina, and A. Savchenko. 2006. Structural characterization of GntR/HutC family signaling domain. Protein Sci. 15: 1506-1511 https://doi.org/10.1110/ps.062146906
  5. Fineran, P. C., L. Everson, H. Slater, and G. P. C. Salmond. 2005. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology 151: 3833-3845 https://doi.org/10.1099/mic.0.28251-0
  6. Frunzke, J., V. Engels, S. Hasenbein, C. Gatgens, and M. Bott. 2008. Co- rdinated regulation of gluconate catabolism and glucose uptake in orynebacterium glutamicum by two functionally equivalent transcriptional egulators, GntR1 and GntR2. Mol. Microbiol. 190: 1335-1343
  7. Fujita, Y., T. Fujita, Y. Miwa, J. I. Nihashi, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261: 13744-13753
  8. Haine, V., A. Sinon, F. Van Steen, S. Rousseau, M. Dozot, P. Lestrate, C. Lambert, J. Letesson, and X. De Bolle. 2005. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect. Immun. 73: 5578-5586 https://doi.org/10.1128/IAI.73.9.5578-5586.2005
  9. Hamza, I., S. Chauhan, R. Hassett, and M. R. O'Brian. 1998. The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem. 273: 21669- 21674 https://doi.org/10.1074/jbc.273.34.21669
  10. Hanssler, E., T. Muller, N. Jessberger, A. Volzke, J. Plassmeier, J. Kalinowski, R. Kramer, and A. Burkovski. 2007. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76: 625-632 https://doi.org/10.1007/s00253-007-0929-5
  11. Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4: 172-177 https://doi.org/10.1016/S1369-5274(00)00184-3
  12. Hillerich, B. and J. Westpheling. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188: 7477-7487 https://doi.org/10.1128/JB.00898-06
  13. Hirono, I., N. Tange, and T. Aoki. 1997. Iron regulated hemolysin gene from Edwardsiella tarda. Mol. Microbiol. 24: 851-856 https://doi.org/10.1046/j.1365-2958.1997.3971760.x
  14. Hoskisson, P. A., S. Rigali, K. Fowler, K. C. Findlay, and M. J. Buttner. 2006. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J. Bacteriol. 188: 5014-5023 https://doi.org/10.1128/JB.00307-06
  15. Janda, J. M. and S. L. Abbott. 1993. Expression of an ironregulated hemolysin by Edwardsiella tarda. FEMS Microbiol. Lett. 111: 275-280 https://doi.org/10.1111/j.1574-6968.1993.tb06398.x
  16. Janda, J. M., S. L. Abott, S. Kroshe-Bystrom, W. K. W. Cheng, C. Powers, R. P. Kokka, and K. Tamura. 1991. Pathogenic properties of Edwardsiella species. J. Clin. Microbiol. 29: 1977-2001
  17. Jaques, S. and L. L. McCarter. 2006. Three new regulators of swarming in Vibrio parahaemolyticus. J. Bacteriol. 188: 2625- 2635 https://doi.org/10.1128/JB.188.7.2625-2635.2006
  18. Kalivoda, K. A., S. M. Steenbergen, E. R. Vimr, and J. Plumbridge. 2003. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J. Bacteriol. 185: 4806-4815 https://doi.org/10.1128/JB.185.16.4806-4815.2003
  19. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{{-{\bigtriangleup}{\bigtriangleup}}CT}$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  20. Lin, J. W., H. C. Lu, H. Y. Chen, and S. F. Weng. 1997. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 239: 228-234 https://doi.org/10.1006/bbrc.1997.7461
  21. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  22. Miyazaki, T. and N. Kaige. 1985. Comparative histopathology of edwardsiellosis in fishes. Fish Pathol. 20: 219-227 https://doi.org/10.3147/jsfp.20.219
  23. Murray, E. L. and T. Conway. 2005. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J. Bacteriol. 187: 991-1000 https://doi.org/10.1128/JB.187.3.991-1000.2005
  24. Reizer, A., J. Deutscher, M. H. Saier, and J. Reizer. 1991. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol. Microbiol. 5: 1081-1089 https://doi.org/10.1111/j.1365-2958.1991.tb01880.x
  25. Rigali, S., A. Derouaux, F. Giannotta, and J. Dusart. 2002. Subdivision of the helix-turn-helix GntR family of bacterial regulators in FadR, HutC, MocR and YtrA sub-families. J. Biol. Chem. 277: 12507-12515 https://doi.org/10.1074/jbc.M110968200
  26. Rigali, S., H. Nothaft, E. E. Noens, M. Schlicht, S. Colson, M. Muller, et al. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61: 1237-1251 https://doi.org/10.1111/j.1365-2958.2006.05319.x
  27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  28. Schauder, S., K. Shokat, M. G. Surette, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 463-476 https://doi.org/10.1046/j.1365-2958.2001.02532.x
  29. Slaven, E. M., F. A. Lopez, S. M. Hart, and C. V. Sanders. 2001. Myonecrosis caused by Edwardsiella tarda: A case report and case series of extraintestinal E. tarda infections. Clin. Infect. Dis. 32: 1430-1433 https://doi.org/10.1086/320152
  30. Srinivasa Rao, P. S., Y. Yamada, and K. Y. Leung. 2003. A major catalase (KatB) that is required for $H_2O_2$ and phagocytemediated killing in Edwardsiella tarda. Microbiology 149: 2635-2644 https://doi.org/10.1099/mic.0.26478-0
  31. Sun, L., J. vanderSpek, and J. R. Murphy. 1998. Isolation and characterization of iron-independent positive dominant mutants of Diphtheria toxin repressor, DtxR. Proc. Natl. Acad. Sci. U.S.A. 95: 14985-14990 https://doi.org/10.1073/pnas.95.25.14985
  32. Surette, M. G. and B. L. Bassler. 1999. Regulation of autoinducer production in Salmonella typhimurium. Mol. Microbiol. 31: 585-595 https://doi.org/10.1046/j.1365-2958.1999.01199.x
  33. Tan, Y. P., J. Zheng, S. L. Tung, I. Rosenshine, and K. Y. Leung. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151: 2301-2313 https://doi.org/10.1099/mic.0.28005-0
  34. Ullah, M. A. and T. Arai. 1983. Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathol. 18: 65-70 https://doi.org/10.3147/jsfp.18.65
  35. Vendeville, A., K. Winzer, K. Heurlier, C. M. Tang, and K. R. Hardie. 2005. Making 'sense' of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3: 383-396 https://doi.org/10.1038/nrmicro1146
  36. Wang, F., S. Cheng, K. Sun, and L. Sun. 2008. Molecular analysis of the fur (ferric uptake regulator) gene of a pathogenic Edwardsiella tarda strain. J. Microbiol. 46: 350-355 https://doi.org/10.1007/s12275-008-0038-x
  37. Wiethaus, J., B. Schubert, Y. Pfander, F. Narberhaus, and B. Masepohl. 2008. The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J. Bacteriol. 190: 487-493 https://doi.org/10.1128/JB.01510-07
  38. Winzer, K., K. R. Hardie, N. Burgess, N. Doherty, D. Kirke, M. T. Holden, et al. 2002. LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909-922 https://doi.org/10.1099/00221287-148-4-909
  39. Zhang, M., K. Sun, and L. Sun. 2008. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology 154: 2060-2069 https://doi.org/10.1099/mic.0.2008/017343-0
  40. Zhang, W. and L. Sun. 2007. Cloning, characterization and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831 https://doi.org/10.1128/AEM.02872-06
  41. Zheng, J. and K. Y. Leung. 2007. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66: 1192-1206 https://doi.org/10.1111/j.1365-2958.2007.05993.x

Cited by

  1. Domain analysis of the Edwardsiella tarda ferric uptake regulator vol.55, pp.5, 2009, https://doi.org/10.2323/jgam.55.351
  2. Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA–EsrB and nucleoid protein HhaEt vol.29, pp.6, 2009, https://doi.org/10.1016/j.fsi.2010.08.025
  3. Edwardsiella tarda DnaJ is a virulence-associated molecular chaperone with immunoprotective potential vol.31, pp.2, 2011, https://doi.org/10.1016/j.fsi.2011.05.001
  4. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions vol.7, pp.None, 2017, https://doi.org/10.3389/fcimb.2017.00148