Browse > Article
http://dx.doi.org/10.4014/jmb.0812.649

An In Vitro Study of the Antifungal Effect of Silver Nanoparticles on Oak Wilt Pathogen Raffaelea sp.  

Kim, Sang-Woo (Division of Bio-Resources Technology, Kangwon National University)
Kim, Kyoung-Su (Division of Bio-Resources Technology, Kangwon National University)
Lamsal, Kabir (Division of Bio-Resources Technology, Kangwon National University)
Kim, Young-Jae (Division of Bio-Resources Technology, Kangwon National University)
Kim, Seung-Bin (Department of Chemistry, POSTECH)
Jung, Moo-Young (School of Technology Management, Ulsan National1nstitute of Science and Technology)
Sim, Sang-Jun (Forest Research Institute of Gangwon Province)
Kim, Ha-Sun (Forest Research Institute of Gangwon Province)
Chang, Seok-Joon (Forest Research Institute of Gangwon Province)
Kim, Jong-Kuk (Division of Forest Resources, Kangwon National University)
Lee, Youn-Su (Division of Bio-Resources Technology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.8, 2009 , pp. 760-764 More about this Journal
Abstract
In this study, we investigated the antifungal activity of three different forms of silver nanoparticles against the unidentified ambrosia fungus Raffaelea sp., which has been responsible for the mortality of a large number of oak trees in Korea. Growth of fungi in the presence of silver nanoparticles was significantly inhibited in a dose-dependent manner. We also assessed the effectiveness of combining the different forms of nanoparticles. Microscopic observation revealed that silver nanoparticles caused detrimental effects not only on fungal hyphae but also on conidial germination.
Keywords
Silver nanoparticles; Raffaelea; ambrosia; oak wilt;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Batra, L. R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans. Kansas Acad. Sci. 66: 213-236   DOI
2 Bragg, P. D. and D. J. Rannie. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20: 883-889   DOI   PUBMED   ScienceOn
3 Nel, A., T. Xia, L. M$\ddot{a}$dler, and N. Li. 2003. Toxic potential of materials at the nanolevel. Science 311: 622-627   DOI   ScienceOn
4 Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanobiotechnology. 16: 2346-2353   DOI   ScienceOn
5 Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188-194   DOI   ScienceOn
6 Jones, G. J. and M. Blackwell. 1998. Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol. Res. 102: 661-665   DOI   ScienceOn
7 Hwang, E. T., J. H. Lee, Y. J. Chae, Y. S. Kim, B. C. Kim, B. I. Sang, and M. B. Gu. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746-750   DOI   ScienceOn
8 Gebhardt, H. and F. Oberwinkler. 2005. Conidial development in selected ambrosial species of the genus Raffaelea. Antonie van Leewenhoek 88: 61-66   DOI   ScienceOn
9 Fraedrich, S. W. 2008. California laurel is susceptible to laurel wilt caused by Raffaelea lauricola. Plant Disease 92: 1469   DOI
10 Kuroda, K. 2001. Response of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J. Wood Sci. 47: 425-429   DOI   ScienceOn
11 Thurman, K. G. and C. H. P. Gerba. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control 18: 295-315   DOI
12 Feng, Q. L., J. Wu, G. O. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668   DOI   ScienceOn
13 Yeo, S. Y., H. J. Lee, and S. H. Jeong. 2003. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 38: 2143-2147   DOI   ScienceOn
14 Kinuura, H. and M. Kobayashi. 2006. Death of Quercus crispula by inoculation with adult Platypus quercivorus (Coleoptera: Platypodidae). Appl. Entomol. Zool. 41: 123-128   DOI   ScienceOn
15 Kinuura, H. 2002. Relative dominance of the model fungus, Raffaelea sp., in the mycangium and proventriculus in relation to adult stages of the oak platypodid beetle, Platypus quercivorus (Coleoptera; Platypodidae). J. For. Res. 7: 7-12   DOI
16 Elchiguerra, J. L., J. L. Burt, J. R. Morones, A. Camacho- Bragado, X. Gao, H. H. Lara, and M. J. Yacaman. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 6   DOI   ScienceOn
17 Ito, S., T. Kubono, N. Sahashi, and T. Yamada. 1998. Associated fungi with the mass mortality of oak trees. J. Japan For. Soc. 80: 170-175
18 Samuel, U. and J. P. Guggenbichler. 2004. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents 23S1: S75- S78   DOI   ScienceOn