DOI QR코드

DOI QR Code

Diversity of Bacillus thuringiensis Strains Isolated from Citrus Orchards in Spain and Evaluation of Their Insecticidal Activity Against Ceratitis capitata

  • J.C., Vidal-Quist (Centro de Proteccion Vegetal y Biotecnologia, IVIA, Ctra. Moncada-Naquera km) ;
  • Castanera, P. (Departamento Biologia de Plantas, CIB, CSIC, C/ Ramiro de Maeztu) ;
  • Gonzalez-Cabrera, J. (Centro de Proteccion Vegetal y Biotecnologia, IVIA, Ctra. Moncada-Naquera km)
  • Published : 2009.08.31

Abstract

A survey of Bacillus thuringiensis (Berliner) strains isolated from Spanish citrus orchards has been performed, and the strains were tested for insecticidal activity against the Mediterranean fruit fly Ceratitis capitata (Wiedemann), a key citrus pest in Spain. From a total of 150 environmental samples, 376 isolates were selected, recording a total B. thuringiensis index of 0.52. The collection was characterized by means of phase-contrast microscopy, SDS-PAGE, and PCR analysis with primer pairs detecting toxin genes cry1, cry2, cry3, cry4, cry5, cry7, cry8, cry9, cry10, cry11, cry12, cry14, cry17, cry19, cry21, cry27, cry39, cry44, cyt1, and cyt2. Diverse crystal inclusion morphologies were identified: bipyramidal (45%), round (40%), adhered to the spore (7%), small (5%), and irregular (3%). SDS-PAGE of spore-crystal preparations revealed 39 different electrophoresis patterns. All primer pairs used in PCR tests gave positive amplifications in strains of our collection, except for primers for detection of cry3, cry19, cry39, or cry44 genes. Strains containing cry1, cry2, cry4, and cry27 genes were the most abundant (48.7%, 46%, 11.2%, and 8.2% of the strains, respectively). Ten different genetic profiles were found, although a total of 109 strains did not amplify with the set of primers used. Screening for toxicity against C. capitata adults was performed using both spore-crystal and soluble fractions. Mortality levels were less than 30%. We have developed a large and diverse B. thuringiensis strain collection with huge potential to control several agricultural pests; however, further research is needed to find out Bt strains active against C. capitata.

Keywords

References

  1. Alberola, T. M., S. Aptosoglou, M. Arsenakis, Y. Bel, G. Delrio, D. J. Ellar, et al. 1999. Insecticidal activity of strains of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). J. Invertebr. Pathol. 74: 127-136 https://doi.org/10.1006/jipa.1999.4871
  2. Arrieta, G., A. Hern$\acute{a}$ndez, and A. M. Espinoza. 2004. Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei Ferrari. Rev. Biol. Trop. 52: 757-764
  3. Barloy, F., M. M. Lecadet, and A. Delecluse. 1998. Distribution of clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Curr. Microbiol. 36: 232-237 https://doi.org/10.1007/s002849900300
  4. Bel, Y., F. Granero, T. M. Alberola, M. J. Mart$\acute{i}$nez-Sebasti$\acute{a}$n, and J. Ferr$\acute{e}$. 1997. Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Syst. Appl. Microbiol. 20: 652-658
  5. Ben Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, et al. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890
  6. Ber$\acute{o}$n, C. M. and G. L. Salerno. 2006. Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control. Biocontrol 51: 779-794 https://doi.org/10.1007/s10526-006-9018-4
  7. Berry, C., S. O'Neil, E. Ben Dov, A. F. Jones, L. Murphy, M. A. Quail, et al. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082-5095 https://doi.org/10.1128/AEM.68.10.5082-5095.2002
  8. Bravo, A., S. Sarabia, L. LOpez, H. Ontiveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalobos, G. Pena, M. E. Nunez- Valdez, M. Soberon, and R. Quintero. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64: 4965-4972
  9. Casta$\tilde{n}$era, P. 2003. Control integrado de la mosca mediterránea de la fruta, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) en cítricos. Phytoma Espa$\tilde{n}$a 153: 131-133
  10. Chak, K. F., D. C. Chao, M. Y. Tseng, S. S. Kao, S. J. Tuan, and T. Y. Feng. 1994. Determination and distribution of crytype genes of Bacillus thuringiensis isolates from Taiwan. Appl. Environ. Microbiol. 60: 2415-2420
  11. Charles, J. F. and C. Nielsen-LeRoux. 2000. Mosquitocidal bacterial toxins: Diversity, mode of action and resistance phenomena. Mem. Inst. Oswaldo Cruz 95: 201-206 https://doi.org/10.1590/S0074-02762000000700034
  12. de Barros Moreira, B. H. and M. H. Silva-Filha. 2007. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol. Lett. 266: 163-169 https://doi.org/10.1111/j.1574-6968.2006.00527.x
  13. Gingrich, R. E. 1987. Demonstration of Bacillus thuringiensis as a potential control agent for the adult Mediterranean fruit fly, Ceratitis capitata (Wied.). J. Appl. Entomol. 104: 378-385 https://doi.org/10.1111/j.1439-0418.1987.tb00538.x
  14. Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvacidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 37: 355-358
  15. Guerchicoff, A., A. Delecluse, and C. P. Rubinstein. 2001. The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl. Environ. Microbiol. 67: 1090-1096 https://doi.org/10.1128/AEM.67.3.1090-1096.2001
  16. Guerchicoff, A., R. A. Ugalde, and C. P. Rubinstein. 1997. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63: 2716-2721
  17. Hansen, B. M., P. H. Damgaard, J. Eilenberg, and J. C. Pedersen. 1998. Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invertebr. Pathol. 71: 106-114 https://doi.org/10.1006/jipa.1997.4712
  18. Hernandez, C. S., R. Andrew, Y. Bel, and J. Ferre. 2005. Isolation and toxicity of Bacillus thuringiensis from potatogrowing areas in Bolivia. J. Invertebr. Pathol. 88: 8-16 https://doi.org/10.1016/j.jip.2004.10.006
  19. Hodgman, T. C., Y. Ziniu, S. Ming, T. Sawyer, C. M. Nicholls, and D. J. Ellar. 1993. Characterization of a Bacillus thuringiensis strain which is toxic to the housefly Musca domestica. FEMS Microbiol. Lett. 114: 17-22 https://doi.org/10.1111/j.1574-6968.1993.tb06544.x
  20. Hwang, S. H., H. Saitoh, E. Mizuki, K. Higuchi, and M. Ohba. 1998. A novel class of mosquitocidal delta-endotoxin, Cry19B, encoded by a Bacillus thuringiensis serovar higo gene. Syst. Appl. Microbiol. 21: 179-184 https://doi.org/10.1016/S0723-2020(98)80022-2
  21. Ibarra, J. E., M. C. Del Rinc$\acute{o}$n, S. Orduz, D. Noriega, G. Benintende, R. Monnerat, et al. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274 https://doi.org/10.1128/AEM.69.9.5269-5274.2003
  22. IPCS-WHO. 2000. Environmental Health Criteria 217: Bacillus thuringiensis
  23. Iriarte, J., Y. Bel, M. D. Ferrandis, R. Andrew, J. Murillo, J. Ferr$\acute{e}$, and P. Caballero. 1998. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Syst. Appl. Microbiol. 21: 97-106 https://doi.org/10.1016/S0723-2020(98)80012-X
  24. Iriarte, J., M. Porcar, M. Lecadet, and P. Caballero. 2000. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr. Microbiol. 40: 402- 408 https://doi.org/10.1007/s002840010078
  25. Ito, T., H. Bando, and S. Asano. 2006. Activation process of the mosquitocidal delta-endotoxin Cry39A produced by Bacillus thuringiensis subsp. aizawai BUN1-14 and binding property to Anopheles stephensi BBMV. J. Invertebr. Pathol. 93: 29-35 https://doi.org/10.1016/j.jip.2006.05.007
  26. Ito, T., T. Ikeya, K. Sahara, H. Bando, and S. Asano. 2006. Cloning and expression of two crystal protein genes, cry30Ba1 and cry44Aa1, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288. Appl. Environ. Microbiol. 72: 5673-5676 https://doi.org/10.1128/AEM.01894-05
  27. Itoua-Apoyolo, C., L. Drif, J. M. Vassal, H. DeBarjac, J. P. Bossy, F. Leclant, and R. Frutos. 1995. Isolation of multiple subspecies of Bacillus thuringiensis from a population of the European sunflower moth, Homoeosoma nebulella. Appl.Environ. Microbiol. 61: 4343-4347
  28. Jara, S., P. Maduell, and S. Orduz. 2006. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J. Appl. Microbiol. 101: 117-124 https://doi.org/10.1111/j.1365-2672.2006.02901.x
  29. Karamanlidou, G., A. F. Lambropoulos, S. I. Koliais, T. Manousis, D. Ellar, and C. Kastritsis. 1991. Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Appl. Environ. Microbiol. 57: 2277-2282
  30. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685 https://doi.org/10.1038/227680a0
  31. Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent, and I. Thiery. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672 https://doi.org/10.1046/j.1365-2672.1999.00710.x
  32. Magana, C., P. Hernandez-Crespo, A. Brun-Barale, F. Couso- Ferrer, J. M. Bride, P. Castanera, R. Feyereisen, and F. Ortego. 2008. Mechanisms of esistance to malathion in the medfly Ceratitis capitata. Insect Biochem. Mol. Biol. 38: 756-762 https://doi.org/10.1016/j.ibmb.2008.05.001
  33. Magana, C., P. Hernandez-Crespo, F. Ortego, and P. Castanera. 2007. Resistance to Malathion in field populations of Ceratitis capitata. J. Econ. Entomol. 100: 1836-1843 https://doi.org/10.1603/0022-0493(2007)100[1836:RTMIFP]2.0.CO;2
  34. Mohan, M. and G. T. Gujar. 2003. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). J. Invertebr. Pathol. 82: 1-11 https://doi.org/10.1016/S0022-2011(02)00194-5
  35. Porcar, M. and V. M. Juarez-Perez. 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev. 26: 419-432 https://doi.org/10.1111/j.1574-6976.2003.tb00624.x
  36. Primo-Millo, J., F. Alfaro, and R. Argiles. 2003. Plan de actuacion contra la mosca de las frutas (Ceratitis capitata) en la Comunidad Valenciana. Phytoma Espana 153: 127-130
  37. Quesada-Moraga, E., E. Garc$\acute{i}$a-Tovar, P. Valverde-Garc$\acute{i}$a, and C. Santiago-$\acute{A}$lvarez. 2004. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Microbiol. Res. 159: 59-71 https://doi.org/10.1016/j.micres.2004.01.011
  38. Reddy, Y. C. and G. Venkateswerlu. 2002. Intracellular proteases of Bacillus thuringiensis subsp. kurstaki and a protease-deficient mutant Btk-q. Curr. Microbiol. 45: 405-409 https://doi.org/10.1007/s00284-002-3767-9
  39. Robacker, D. C., A. J. Mart$\acute{i}$nez, J. A. García, M. D$\acute{i}$az, and C. Romero. 1996. Toxicity of Bacillus thuringiensis to Mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 89: 104-110 https://doi.org/10.1093/jee/89.1.104
  40. Ru$\acute{i}$z de Escudero, I., I. Ib$\acute{a}$$\tilde{n}$ez, M. A. Padilla, A. Carnero, and P. Caballero. 2004. Aislamiento y caracterizaci$\acute{o}$n de nuevas cepas de Bacillus thuringiensis procedentes de muestras de tierra de Canarias. Bol. San. Veg. Plagas 30: 703-712
  41. Saitoh, H., K. Higuchi, E. Mizuki, S. H. Hwang, and M. Ohba. 1998. Characterization of mosquito larvicidal parasporal inclusions of a Bacillus thuringiensis serovar higo strain. J. Appl. Microbiol. 84: 883-888 https://doi.org/10.1046/j.1365-2672.1998.00426.x
  42. Saitoh, H., S. H. Hwang, Y. S. Park, K. Higuchi, E. Mizuki, and M. Ohba. 2000. Cloning and characterization of a Bacillus thuringiensis serovar higo gene encoding a novel class of the delta-endotoxin protein, Cry27A, specifically active on the Anopheles mosquito. Syst. Appl. Microbiol. 23: 25-30 https://doi.org/10.1016/S0723-2020(00)80042-9
  43. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
  44. Stewart, G. S. A. B., K. Johnstone, E. Hagelberg, and D. J. Ellar. 1981. Commitment of bacterial spores to germinate. Biochem. J. 198: 101-106 https://doi.org/10.1042/bj1980101
  45. Toledo, J., P. Liedo, T. Williams, and J. Ibarra. 1999. Toxicity of Bacillus thuringiensis $\beta$-exotoxin to three species of fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 92: 1052-1056 https://doi.org/10.1093/jee/92.5.1052
  46. Yamagiwa, M., R. Ogawa, K. Yasuda, H. Natsuyama, K. Sen, and H. Sakai. 2002. Active form of dipteran-specific insecticidal protein CryllA produced by Bacillus thuringiensis subsp. israelensis. Biosci. Biotechnol. Biochem. 66: 516-522 https://doi.org/10.1271/bbb.66.516

Cited by

  1. Cyt1Aa protein from Bacillus thuringiensis (Berliner) serovar israelensis is active against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) vol.66, pp.9, 2009, https://doi.org/10.1002/ps.1965
  2. Gene Clusters Located on Two Large Plasmids Determine Spore Crystal Association (SCA) in Bacillus thuringiensis Subsp. finitimus Strain YBT-020 vol.6, pp.11, 2011, https://doi.org/10.1371/journal.pone.0027164
  3. Cloning, Characterization and Diversity of Insecticidal Crystal Protein Genes of Bacillus thuringiensis Native Isolates from Soils of Andaman and Nicobar Islands vol.63, pp.5, 2009, https://doi.org/10.1007/s00284-011-9998-x
  4. Threats to Fruit and Vegetable Crops: Fruit Flies (Tephritidae) - Ecology, Behaviour, and Management vol.15, pp.3, 2009, https://doi.org/10.1007/s12892-011-0091-6
  5. Interaction between crystalline proteins of two Bacillus thuringiensis strains against Spodoptera exigua vol.143, pp.2, 2009, https://doi.org/10.1111/j.1570-7458.2012.01254.x
  6. A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki vol.22, pp.1, 2009, https://doi.org/10.4014/jmb.1108.08061
  7. Bacillus thuringiensis colonises plant roots in a phylogeny‐dependent manner vol.86, pp.3, 2013, https://doi.org/10.1111/1574-6941.12175
  8. Effect of vegetation on the presence and genetic diversity ofBacillus thuringiensisin soil vol.59, pp.1, 2013, https://doi.org/10.1139/cjm-2012-0462
  9. Molecular Characterization and Genetic Diversity of Insecticidal Crystal Protein Genes in Native Bacillus thuringiensis Isolates vol.66, pp.4, 2009, https://doi.org/10.1007/s00284-012-0273-6
  10. Characterization of Cry Proteins in Native Strains ofBacillus thuringiensisand Activity AgainstAnastrepha ludens1 vol.40, pp.1, 2009, https://doi.org/10.3958/059.040.0102
  11. Pathogenicity and characterization of a novel Bacillus cereus sensu lato isolate toxic to the Mediterranean fruit fly Ceratitis capitata Wied. vol.126, pp.None, 2009, https://doi.org/10.1016/j.jip.2015.01.010
  12. Genome Sequence of the Mosquitocidal Bacillus thuringiensis Strain BR58, a Biopesticide Product Effective against the Coffee Berry Borer ( Hypothenemus hampei ) vol.3, pp.6, 2015, https://doi.org/10.1128/genomea.01232-15
  13. Selection and Characterization of Bacillus thuringiensis (Berliner) (Eubacteriales: Bacillaceae) Strains for Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae) Control vol.46, pp.1, 2009, https://doi.org/10.1007/s13744-016-0424-8
  14. Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria vol.9, pp.4, 2017, https://doi.org/10.3390/toxins9040139
  15. Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains vol.7, pp.1, 2009, https://doi.org/10.1007/s13205-016-0583-7
  16. Complete Genome sequence of the nematicidal Bacillus thuringiensis MYBT18246 vol.12, pp.None, 2009, https://doi.org/10.1186/s40793-017-0259-x
  17. Selection and characterization of Bacillus thuringiensis strains from northwestern Himalayas toxic against Helicoverpa armigera vol.6, pp.6, 2009, https://doi.org/10.1002/mbo3.484
  18. Immunodetection of the toxic portion of Vip3A reveals differential temporal regulation of its secretion among Bacillus thuringiensis strains vol.125, pp.2, 2009, https://doi.org/10.1111/jam.13775
  19. Quantification of dose-mortality responses in adult Diptera: Validation using Ceratitis capitata and Drosophila suzukii responses to spinosad vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0210545
  20. Biological Activity of Bacillus thuringiensis in Drosophila suzukii (Diptera: Drosophilidae) vol.109, pp.3, 2019, https://doi.org/10.1093/jee/tow062
  21. Occurrence and functional diversity of bacteria in rhizosphere of citrus trees infested by Tylenchulus semipenetrans in a citrus-growing area of Tunisia vol.155, pp.2, 2009, https://doi.org/10.1007/s10658-019-01781-4