DOI QR코드

DOI QR Code

Fermentation of Rice Bran and Defatted Rice Bran for Butanol Production Using Clostridium beijerinckii NCIMB 8052

  • Lee, Ji-Eun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Seo, Eun-Jong (School of Biotechnology and Bioengineeirng, Sungkyunkwan University) ;
  • Kweon, Dae-Hyuk (School of Biotechnology and Bioengineeirng, Sungkyunkwan University) ;
  • Park, Ki-Moon (School of Biotechnology and Bioengineeirng, Sungkyunkwan University) ;
  • Jin, Yong-Su (Department of Food Science and Human Nutrition, University of Ilinois at Urbana-Champain)
  • Published : 2009.05.31

Abstract

We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran, which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment or both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment, and combined treatment with enzyme and acid yielded even more sugars as compared with single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/l) was observed from the hydrolyzate from DRB (100 g/l) with combined treatment using enzyme and acid. Prior to fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without addition of P2 was performed using C. beijerinckii NCIMB 8052 in a 1-1 anaerobic bioreactor. Although the RB hydrolyzates were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. The highest butanol production (12.24 g/l) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.

Keywords

References

  1. Ali, M. K., F. B. Rudolph, and G. N. Bennett. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 32: 12-18 https://doi.org/10.1007/s10295-004-0192-z
  2. Annous, B. A. and H. P. Blaschek. 1990. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 56: 2559-2561
  3. Awang, G. M., G. A. Jones, and W. M. Ingledew. 1988. The acetone-butanol-ethanol fermentation. Crit. Rev. Microbiol. 15 Suppl 1: S33-67 https://doi.org/10.3109/10408418809104464
  4. Bahl, H., M. Gottwald, A. Kuhn, V. Rale, W. Andersch, and G. Gottschalk. 1986. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52: 169-172
  5. Durre, P., R. J. Fischer, A. Kuhn, K. Lorenz, W. Schreiber, B. Sturzenhofecker, S. Ullmann, K. Winzer, and U. Sauer. 1995. Solventogenic enzymes of Clostridium acetobutylicum: Catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol. Rev. 17: 251-262 https://doi.org/10.1111/j.1574-6976.1995.tb00209.x
  6. Ezeji, T. C., M. Groberg, N. Qureshi, and H. P. Blaschek. 2003. Continuous production of butanol from starch-based packing peanuts. Appl. Biochem. Biotechnol. 105-108: 375-382 https://doi.org/10.1385/ABAB:106:1-3:375
  7. Ezeji, T. C., N. Qureshi, and H. P. Blaschek. 2007. Bioproduction of butanol from biomass: From genes to bioreactors. Curr. Opin. Biotechnol. 18: 220-227 https://doi.org/10.1016/j.copbio.2007.04.002
  8. Formanek, J., R. Mackie, and H. P. Blaschek. 1997. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl. Environ. Microbiol. 63: 2306-2310
  9. Gapes, J. R., H. Swoboda, A. Haslinger, and D. Nimcevic. 2000. The effect of heat-shocking on batch fermentation by Clostridium beijerinckii NRRL B592. Appl. Microbiol. Biotechnol. 54: 118-120 https://doi.org/10.1007/s002530000341
  10. Gonzalez-Pajuelo, M., I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7: 329-336 https://doi.org/10.1016/j.ymben.2005.06.001
  11. Gottschalk, G. and H. Bahl. 1981. Feasible improvements of the butanol production by Clostridium acetobutylicum. Basic Life Sci. 18: 463-471
  12. Jesse, T. W., T. C. Ezeji, N. Qureshi, and H. P. Blaschek. 2002. Production of butanol from starch-based waste packing peanuts and agricultural waste. J. Ind. Microbiol. Biotechnol. 29: 117- 123 https://doi.org/10.1038/sj.jim.7000285
  13. Jones, D. T. and D. R. Woods. 1986. Gene transfer, recombination and gene cloning in Clostridium acetobutylicum. Microbiol. Sci. 3: 19-22
  14. Lee, J. and H. P. Blaschek. 2001. Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 67: 5025-5031 https://doi.org/10.1128/AEM.67.11.5025-5031.2001
  15. Lee, J., W. J. Mitchell, M. Tangney, and H. P. Blaschek. 2005. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 71: 3384-3387 https://doi.org/10.1128/AEM.71.6.3384-3387.2005
  16. Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39: 31-130 https://doi.org/10.1016/S0065-2911(08)60015-6
  17. Mitchell, W. J., J. E. Shaw, and L. Andrews. 1991. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Appl. Environ. Microbiol. 57: 2534-2539
  18. Monot, F., J. R. Martin, H. Petitdemange, and R. Gay. 1982. Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl. Environ. Microbiol. 44: 1318-1324
  19. Nakajima, N. and Y. Matsuura. 1997. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum- Clostridium beijerinckii group. Biosci. Biotechnol. Biochem. 61: 1739-1742 https://doi.org/10.1271/bbb.61.1739
  20. Ounine, K., H. Petitdemange, G. Raval, and R. Gay. 1985. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl. Environ. Microbiol. 49: 874-878
  21. Parerek, M. and H. P. Blaschek. 1999. Butanol production by hypersolvent- roducing mutant Clostridium beijerinckii BA101 in corn steep water medium containing maltodextrin. Biotech. Lett. 21: 45-48 https://doi.org/10.1023/A:1005406120874
  22. Purwadi, R., C. Niklasson, and M. J. Taherzadeh. 2004. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J. Biotechnol. 114: 187-198 https://doi.org/10.1016/j.jbiotec.2004.07.006
  23. Qureshi, N. and H. P. Blaschek. 2000. Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl. Biochem. Biotechnol. 84-86: 225-235 https://doi.org/10.1385/ABAB:84-86:1-9:225
  24. Qureshi, N. and H. P. Blaschek. 2001. Recent advances in ABE fermentation: Hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 27: 287-291 https://doi.org/10.1038/sj.jim.7000114
  25. Qureshi, N., A. Lolas, and H. P. Blaschek. 2001. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 26: 290-295 https://doi.org/10.1038/sj.jim.7000131
  26. Qureshi, N., B. C. Saha, and M. A. Cotta. 2007. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst. Eng. 30: 419-427 https://doi.org/10.1007/s00449-007-0137-9
  27. Tanaka, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi. 2006. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97: 211-217 https://doi.org/10.1016/j.biortech.2005.02.025
  28. Zappe, H., W. A. Jones, and D. R. Woods. 1990. Nucleotide sequence of a Clostridium acetobutylicum P262 xylanase gene (xynB). Nucleic Acids Res. 18: 2179 https://doi.org/10.1093/nar/18.8.2179
  29. Zverlov, V. V., O. Berezina, G. A. Velikodvorskaya, and W. H. Schwarz. 2006. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 71: 587-597 https://doi.org/10.1007/s00253-006-0445-z

Cited by

  1. Extremophiles in biofuel synthesis vol.31, pp.8, 2010, https://doi.org/10.1080/09593331003710236
  2. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4 vol.35, pp.5, 2009, https://doi.org/10.1007/s00449-011-0664-2
  3. Butanol production from lignocellulosics vol.34, pp.8, 2009, https://doi.org/10.1007/s10529-012-0926-3
  4. Acetone-Butanol-Ethanol Production by Clostridium acetobutylicum ATCC 824 Using Sago Pith Residues Hydrolysate vol.6, pp.1, 2013, https://doi.org/10.1007/s12155-012-9260-9
  5. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain vol.3, pp.2, 2013, https://doi.org/10.1007/s13399-012-0062-2
  6. Biobutanol: the outlook of an academic and industrialist vol.3, pp.47, 2009, https://doi.org/10.1039/c3ra43011a
  7. Butanol fermentation vol.34, pp.13, 2009, https://doi.org/10.1080/09593330.2013.827746
  8. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives vol.30, pp.4, 2009, https://doi.org/10.1007/s11274-013-1542-7
  9. Production, Purification, and Characterization of α-Amylase from Solventogenic Clostridium sp. BOH3 vol.7, pp.1, 2009, https://doi.org/10.1007/s12155-013-9356-x
  10. Enhancement of ABE fermentation through regulation of ammonium acetate and D-xylose uptake from acid-pretreated corncobs vol.64, pp.2, 2009, https://doi.org/10.1007/s13213-013-0673-2
  11. Recent advances on biobutanol production vol.2, pp.None, 2009, https://doi.org/10.1186/2043-7129-2-15
  12. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum vol.25, pp.10, 2009, https://doi.org/10.4014/jmb.1504.04070
  13. An integrated approach: advances in the use ofClostridiumfor biofuel vol.31, pp.1, 2009, https://doi.org/10.1080/02648725.2016.1168075
  14. Multiobjective Stochastic Optimization Approach Applied to a Hybrid Process Production–Separation in the Production of Biobutanol vol.56, pp.7, 2009, https://doi.org/10.1021/acs.iecr.6b04230
  15. Optimal Planning of Feedstock for Butanol Production Considering Economic and Environmental Aspects vol.5, pp.5, 2017, https://doi.org/10.1021/acssuschemeng.7b00015
  16. Effect of Operating Conditions and Immobilization on Butanol Enhancement in an Extractive Fermentation Using Non-ionic Surfactant vol.187, pp.4, 2009, https://doi.org/10.1007/s12010-018-2892-2
  17. Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies vol.6, pp.2, 2020, https://doi.org/10.3390/fermentation6020042
  18. Purified Butanol from Lignocellulose – Solvent‐Impregnated Resins for an Integrated Selective Removal vol.92, pp.11, 2009, https://doi.org/10.1002/cite.202000200