DOI QR코드

DOI QR Code

Production of 3-Hydroxypropionic Acid from Acrylic Acid by Newly Isolated Rhodococcus erythropolis LG12

  • Published : 2009.05.31

Abstract

A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropo/is LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an $OD_{600}$ of 5. Further cultivation of R. erythropo/is LG 12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/l/h at $30^{\circ}C$ after 72 h.

Keywords

References

  1. Akedo, M., C. L. Cooney, and A. J. Sinskey. 1983. Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum. Biotechnology 1: 791-794 https://doi.org/10.1038/nbt1183-791
  2. Alber, B. E. and G. Fuchs. 2002. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277: 12137-12143 https://doi.org/10.1074/jbc.M110802200
  3. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Andreoni, V., S. Bernasconi, C. Sorlini, and M. Villa. 1990. Microbial degradation of acrylic acid. Ann. Microbiol. 40: 279-286
  5. Ansede, J. H., R. J. Pellechia, and D. C. Yoch. 1999. Metabolism of acrylate to b-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65: 5075-5081
  6. Black, K. A., L. Finch, and C. B. Frederick. 1993. Metabolism of acrylic acid to carbon dioxide in mouse tissues. Fundam. Appl. Toxicol. 21: 97-104 https://doi.org/10.1006/faat.1993.1077
  7. Bottazzi, V., B. Battistotti, and F. Bianchi. 1983. Microcolonies formation of thermophilic lactic acid bacteria in grana cheese. Microbiol. Aliments Nutr. 1: 285-291
  8. Bringmann, G. and R. Kuhn. 1980. Comparison at the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Wat. Res. 14: 231-241 https://doi.org/10.1016/0043-1354(80)90093-7
  9. Brown, S. F. 2003. Bioplastic fantastic. Fortune 148: 92-97
  10. Cheng, Q., S. M. Thomas, K. Kostichka, J. R. Valentine, and V. Nagarajan. 2000. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J. Bacteriol. 182: 4744-4751 https://doi.org/10.1128/JB.182.17.4744-4751.2000
  11. Dalal, R. K., M. Akedo, C. L. Cooney, and A. J. Sinskey. 1980. A microbial route for acrylic acid production. Biosource Dig. 2: 89-97
  12. Hasegawa, J., M. Ogura, H. Kanema, H. Kawaharada, and K. Watanabe. 1982. Production of b-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid. J. Ferment. Technol. 60: 591-594
  13. Matsuyama, H., I. Yumoto, T. Kuto, and O. Shida. 2003. Rhodococcus tukisamunsis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 53: 1333-1337 https://doi.org/10.1099/ijs.0.02523-0
  14. Read, R. R. 2002. b-Hydroxypropionic acid. Org. Synth. 1: 321
  15. Shanker, R., C. Ramakrishna, and R. K. Seth. 1990. Microbial degradation of acrylamide monomer. Arch. Microbiol. 154:192-198 https://doi.org/10.1007/BF00423332
  16. Siebruth, J. M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82: 27-29
  17. Suthers, P. F. and D. C. Cameron. 2001. Production of 3-hydroxypropionic acid in recombinant organisms. WO Patent No. 01-16346
  18. Takamizawa, K., H. Horitsu, T. Ichikawa, K. Kawai, and T. Suzuki. 1993. b-Hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl. Microbiol. Biotech. 40: 196-200 https://doi.org/10.1007/BF00170365
  19. Thijsse, G. J. E. 1964. Fatty acid accumulation by acrylate inhibition of b-oxidation in an alkane-oxidizing Pseudomonas. Biochim. Biophys. Acta 84: 195-197
  20. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  21. Yamada, H., T. Nagasawa, and T. Nakamura. 2001. Process for biological production of organic acids. U.S. Patent No. 5135858

Cited by

  1. Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae vol.103, pp.1, 2009, https://doi.org/10.1016/j.biortech.2011.09.099
  2. Cu nanoclusters supported on nanocrystalline SiO2–MnO2: a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid vol.50, pp.68, 2014, https://doi.org/10.1039/c4cc03842h
  3. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells vol.114, pp.3, 2009, https://doi.org/10.1021/cr400309c
  4. Candida albicans Utilizes a Modified β-Oxidation Pathway for the Degradation of Toxic Propionyl-CoA vol.289, pp.12, 2014, https://doi.org/10.1074/jbc.m113.517672
  5. Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation vol.15, pp.4, 2009, https://doi.org/10.1007/s11157-016-9415-9
  6. Immobilization of Acetobacter sp. CGMCC 8142 for Efficient Biocatalysis of 1, 3-propanediol to 3-hydroxypropionic Acid vol.21, pp.4, 2009, https://doi.org/10.1007/s12257-016-0022-y
  7. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid vol.40, pp.6, 2009, https://doi.org/10.1007/s00449-017-1754-6
  8. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0798-2
  9. Screening, identification, and low‐energy ion modified breeding of a yeast strain producing high level of 3‐hydroxypropionic acid vol.9, pp.1, 2009, https://doi.org/10.1002/mbo3.956