References
- Akedo, M., C. L. Cooney, and A. J. Sinskey. 1983. Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum. Biotechnology 1: 791-794 https://doi.org/10.1038/nbt1183-791
- Alber, B. E. and G. Fuchs. 2002. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277: 12137-12143 https://doi.org/10.1074/jbc.M110802200
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
- Andreoni, V., S. Bernasconi, C. Sorlini, and M. Villa. 1990. Microbial degradation of acrylic acid. Ann. Microbiol. 40: 279-286
- Ansede, J. H., R. J. Pellechia, and D. C. Yoch. 1999. Metabolism of acrylate to b-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65: 5075-5081
- Black, K. A., L. Finch, and C. B. Frederick. 1993. Metabolism of acrylic acid to carbon dioxide in mouse tissues. Fundam. Appl. Toxicol. 21: 97-104 https://doi.org/10.1006/faat.1993.1077
- Bottazzi, V., B. Battistotti, and F. Bianchi. 1983. Microcolonies formation of thermophilic lactic acid bacteria in grana cheese. Microbiol. Aliments Nutr. 1: 285-291
- Bringmann, G. and R. Kuhn. 1980. Comparison at the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Wat. Res. 14: 231-241 https://doi.org/10.1016/0043-1354(80)90093-7
- Brown, S. F. 2003. Bioplastic fantastic. Fortune 148: 92-97
- Cheng, Q., S. M. Thomas, K. Kostichka, J. R. Valentine, and V. Nagarajan. 2000. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J. Bacteriol. 182: 4744-4751 https://doi.org/10.1128/JB.182.17.4744-4751.2000
- Dalal, R. K., M. Akedo, C. L. Cooney, and A. J. Sinskey. 1980. A microbial route for acrylic acid production. Biosource Dig. 2: 89-97
- Hasegawa, J., M. Ogura, H. Kanema, H. Kawaharada, and K. Watanabe. 1982. Production of b-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid. J. Ferment. Technol. 60: 591-594
- Matsuyama, H., I. Yumoto, T. Kuto, and O. Shida. 2003. Rhodococcus tukisamunsis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 53: 1333-1337 https://doi.org/10.1099/ijs.0.02523-0
- Read, R. R. 2002. b-Hydroxypropionic acid. Org. Synth. 1: 321
- Shanker, R., C. Ramakrishna, and R. K. Seth. 1990. Microbial degradation of acrylamide monomer. Arch. Microbiol. 154:192-198 https://doi.org/10.1007/BF00423332
- Siebruth, J. M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82: 27-29
- Suthers, P. F. and D. C. Cameron. 2001. Production of 3-hydroxypropionic acid in recombinant organisms. WO Patent No. 01-16346
- Takamizawa, K., H. Horitsu, T. Ichikawa, K. Kawai, and T. Suzuki. 1993. b-Hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl. Microbiol. Biotech. 40: 196-200 https://doi.org/10.1007/BF00170365
- Thijsse, G. J. E. 1964. Fatty acid accumulation by acrylate inhibition of b-oxidation in an alkane-oxidizing Pseudomonas. Biochim. Biophys. Acta 84: 195-197
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Yamada, H., T. Nagasawa, and T. Nakamura. 2001. Process for biological production of organic acids. U.S. Patent No. 5135858
Cited by
- Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae vol.103, pp.1, 2009, https://doi.org/10.1016/j.biortech.2011.09.099
- Cu nanoclusters supported on nanocrystalline SiO2–MnO2: a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid vol.50, pp.68, 2014, https://doi.org/10.1039/c4cc03842h
- Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells vol.114, pp.3, 2009, https://doi.org/10.1021/cr400309c
- Candida albicans Utilizes a Modified β-Oxidation Pathway for the Degradation of Toxic Propionyl-CoA vol.289, pp.12, 2014, https://doi.org/10.1074/jbc.m113.517672
- Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation vol.15, pp.4, 2009, https://doi.org/10.1007/s11157-016-9415-9
- Immobilization of Acetobacter sp. CGMCC 8142 for Efficient Biocatalysis of 1, 3-propanediol to 3-hydroxypropionic Acid vol.21, pp.4, 2009, https://doi.org/10.1007/s12257-016-0022-y
- Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid vol.40, pp.6, 2009, https://doi.org/10.1007/s00449-017-1754-6
- Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0798-2
- Screening, identification, and low‐energy ion modified breeding of a yeast strain producing high level of 3‐hydroxypropionic acid vol.9, pp.1, 2009, https://doi.org/10.1002/mbo3.956