DOI QR코드

DOI QR Code

Biological Synthesis of 7-O-Methyl Apigenin from Naringenin Using Escherichia coli Expressing Two Genes

  • Jeon, Young-Min (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2009.05.31

Abstract

Within the secondary metabolite class of flavonoids, which consist of more than 10,000 known structures, flavones define one of the largest subgroups. The diverse function of flavones in plants as well as their various roles in the interaction with other organisms offers many potential applications including in human nutrition and pharmacology. We used two genes, flavone synthase (PFNS-l) that converts naringenin into apigenin and flavone 7-O-methyltransferase (POMT-7) that converts apigenin into 7-O-methyl apigenin, to synthesize 7-O-methyl apigenenin from naringenin. The PFNS-l gene was subcloned into the E. coli expression vector pGEX and POMT-7 was subcloned into the pRSF vector. Since both constructs contain different replication origins and selection markers, they were cotransformed into E. coli. Using E. coli transformants harboring both PFNS-l and POMT-7, naringenin could be converted into 7-O-methyl apigenin, genkwanin.

Keywords

References

  1. Balunas, M. J. and A. D. Kinghorn. 2005. Drug discovery from medicinal plants. Life Sci. 78: 431-441 https://doi.org/10.1016/j.lfs.2005.09.012
  2. Croteau, R., T. M. Kutchan, and N. G. Lewis. 2000. Natural products (secondary metabolites), pp. 1250-1318. In B. B. Buchanan, W. Gruissern, and R. L. Jones (eds.). Biochemistry and Molecular Biology of Plant. American Society of Plant Physiologists, Rockville, Maryland
  3. Harborne, J. B. and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481-504 https://doi.org/10.1016/S0031-9422(00)00235-1
  4. Julsing, M. K., A. Koulman, H. J. Woerdenbag, W. J. Quax, and O. Kayser. 2006. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomolec. Eng. 23: 265-279 https://doi.org/10.1016/j.bioeng.2006.08.001
  5. Katsuyzma, Y., N. Funa, I. Miyahisa, and S. Horiniuchi. 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Bio. 14: 613-621 https://doi.org/10.1016/j.chembiol.2007.05.004
  6. Kim, B. G., H. Kim, H. G. Hur, Y. Lim, and J.-H. Ahn. 2006. Regioselectivity of 7-O-methyltransferase of poplar to flavones. J. Biotech. 138: 155-162 https://doi.org/10.1016/j.jbiotec.2006.04.019
  7. Kim, B. G., J. H. Kim, J. Kim, C. Lee, C., and J.-H. Ahn. 2008. Accumulation of flavonols by ultraviolet-B is related to induction of flavanone 3-$\beta$-hydroxylase and flavonol synthase in soybean. Mol. Cell 25: 247-252
  8. Lee, Y. J., B.-G. Kim, Y. Park, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096
  9. Leonard, E., K.-H. Lim, P.-N. Saw, and M. A. G. Koffas. 2007. Engineering central metabolic pathways for high-level flavonoid production in Esherichia coli. Appl. Environ. Microbiol. 73: 3877-3886 https://doi.org/10.1128/AEM.00200-07
  10. Leonard, E. and M. A. G. Koffas. 2007. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl. Environ. Microbiol. 73: 7246-7251 https://doi.org/10.1128/AEM.01411-07
  11. Leonard, E., Y. Yan, Z. L. Fowler, Z. Li, C.-G. Lim, K.-H. Lim, and M. A. G. Koffas. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharmaceut. 5: 275-265 https://doi.org/10.1021/mp7001472
  12. Martini, N. D., D. R. Katerere, and J. N. Eloff. 2004. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol. 93: 207-212 https://doi.org/10.1016/j.jep.2004.02.030
  13. Middleton, E. Jr., C. Kandaswami, and T. C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673-751
  14. Miyahisa, I., M. Kaneko, N. Funa, H. Kawasaki, H. Kojima, Y. Ohnishi, and S. Horinouchi. 2006. Efficient production of (2S)- flavones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68: 498-504 https://doi.org/10.1007/s00253-005-1916-3
  15. Tahara, S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71: 1387-1404 https://doi.org/10.1271/bbb.70028
  16. Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 54: 733-749 https://doi.org/10.1111/j.1365-313X.2008.03447.x
  17. Turnbull, J. J., J. Nakajima, R. W. D. Welford, M. Yamazaki, K. Saito, and C. J. Schorield. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279: 1206-1216 https://doi.org/10.1074/jbc.M309228200
  18. Winkel-Shirley, B. 2001. Flavonoid biosynthesis; A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493 https://doi.org/10.1104/pp.126.2.485

Cited by

  1. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol vol.32, pp.4, 2009, https://doi.org/10.1007/s10529-009-0188-x
  2. Genetic and metabolic engineering of isoflavonoid biosynthesis vol.86, pp.5, 2009, https://doi.org/10.1007/s00253-010-2512-8
  3. Flavonoids: biosynthesis, biological functions, and biotechnological applications vol.3, pp.None, 2009, https://doi.org/10.3389/fpls.2012.00222
  4. Analysis of Flavonoid Contents and Expression of Flavonoid Biosynthetic Genes in Populus euramericana Guinier in Response to Abiotic Stress vol.55, pp.1, 2009, https://doi.org/10.1007/s13765-012-0025-0
  5. Plant Omics: Isolation, Identification, and Expression Analysis of Cytochrome P450 Gene Sequences fromColeus forskohlii vol.19, pp.12, 2015, https://doi.org/10.1089/omi.2015.0148
  6. Mannitol Stress Directs Flavonoid Metabolism toward Synthesis of Flavones via Differential Regulation of Two Cytochrome P450 Monooxygenases in Coleus forskohlii vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00985
  7. Deregulation of S -adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway vol.15, pp.None, 2016, https://doi.org/10.1186/s12934-016-0459-x
  8. Functional Characterization of Tea ( Camellia sinensis ) MYB4a Transcription Factor Using an Integrative Approach vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.00943
  9. Biotechnological Production of Dimethoxyflavonoids Using a Fusion Flavonoid O-Methyltransferase Possessing Both 3′- and 7-O-Methyltransferase Activities vol.80, pp.5, 2017, https://doi.org/10.1021/acs.jnatprod.6b01164
  10. Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil vol.102, pp.13, 2009, https://doi.org/10.1007/s00253-018-9043-0