Browse > Article
http://dx.doi.org/10.4014/jmb.0804.275

Fermentation of Rice Bran and Defatted Rice Bran for Butanol Production Using Clostridium beijerinckii NCIMB 8052  

Lee, Ji-Eun (Department of Chemical Engineering, Sungkyunkwan University)
Seo, Eun-Jong (School of Biotechnology and Bioengineeirng, Sungkyunkwan University)
Kweon, Dae-Hyuk (School of Biotechnology and Bioengineeirng, Sungkyunkwan University)
Park, Ki-Moon (School of Biotechnology and Bioengineeirng, Sungkyunkwan University)
Jin, Yong-Su (Department of Food Science and Human Nutrition, University of Ilinois at Urbana-Champain)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.5, 2009 , pp. 482-490 More about this Journal
Abstract
We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran, which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment or both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment, and combined treatment with enzyme and acid yielded even more sugars as compared with single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/l) was observed from the hydrolyzate from DRB (100 g/l) with combined treatment using enzyme and acid. Prior to fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without addition of P2 was performed using C. beijerinckii NCIMB 8052 in a 1-1 anaerobic bioreactor. Although the RB hydrolyzates were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. The highest butanol production (12.24 g/l) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.
Keywords
Butanol; fermentation; rice bran; Clostridium beijerinckii;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bahl, H., M. Gottwald, A. Kuhn, V. Rale, W. Andersch, and G. Gottschalk. 1986. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52: 169-172   PUBMED   ScienceOn
2 Formanek, J., R. Mackie, and H. P. Blaschek. 1997. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl. Environ. Microbiol. 63: 2306-2310   PUBMED   ScienceOn
3 Jones, D. T. and D. R. Woods. 1986. Gene transfer, recombination and gene cloning in Clostridium acetobutylicum. Microbiol. Sci. 3: 19-22   ScienceOn
4 Nakajima, N. and Y. Matsuura. 1997. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum- Clostridium beijerinckii group. Biosci. Biotechnol. Biochem. 61: 1739-1742   DOI   ScienceOn
5 Ounine, K., H. Petitdemange, G. Raval, and R. Gay. 1985. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl. Environ. Microbiol. 49: 874-878   PUBMED   ScienceOn
6 Qureshi, N., A. Lolas, and H. P. Blaschek. 2001. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 26: 290-295   DOI   ScienceOn
7 Tanaka, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi. 2006. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97: 211-217   DOI   ScienceOn
8 Zappe, H., W. A. Jones, and D. R. Woods. 1990. Nucleotide sequence of a Clostridium acetobutylicum P262 xylanase gene (xynB). Nucleic Acids Res. 18: 2179   DOI   ScienceOn
9 Parerek, M. and H. P. Blaschek. 1999. Butanol production by hypersolvent- roducing mutant Clostridium beijerinckii BA101 in corn steep water medium containing maltodextrin. Biotech. Lett. 21: 45-48   DOI   ScienceOn
10 Ali, M. K., F. B. Rudolph, and G. N. Bennett. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 32: 12-18   DOI   ScienceOn
11 Qureshi, N. and H. P. Blaschek. 2001. Recent advances in ABE fermentation: Hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 27: 287-291   DOI   ScienceOn
12 Qureshi, N. and H. P. Blaschek. 2000. Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl. Biochem. Biotechnol. 84-86: 225-235   DOI   ScienceOn
13 Lee, J. and H. P. Blaschek. 2001. Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 67: 5025-5031   DOI   ScienceOn
14 Gottschalk, G. and H. Bahl. 1981. Feasible improvements of the butanol production by Clostridium acetobutylicum. Basic Life Sci. 18: 463-471
15 Lee, J., W. J. Mitchell, M. Tangney, and H. P. Blaschek. 2005. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 71: 3384-3387   DOI   ScienceOn
16 Mitchell, W. J., J. E. Shaw, and L. Andrews. 1991. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Appl. Environ. Microbiol. 57: 2534-2539   PUBMED   ScienceOn
17 Annous, B. A. and H. P. Blaschek. 1990. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 56: 2559-2561   PUBMED   ScienceOn
18 Gapes, J. R., H. Swoboda, A. Haslinger, and D. Nimcevic. 2000. The effect of heat-shocking on batch fermentation by Clostridium beijerinckii NRRL B592. Appl. Microbiol. Biotechnol. 54: 118-120   DOI   ScienceOn
19 Gonzalez-Pajuelo, M., I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7: 329-336   DOI   ScienceOn
20 Jesse, T. W., T. C. Ezeji, N. Qureshi, and H. P. Blaschek. 2002. Production of butanol from starch-based waste packing peanuts and agricultural waste. J. Ind. Microbiol. Biotechnol. 29: 117- 123   DOI   ScienceOn
21 Ezeji, T. C., N. Qureshi, and H. P. Blaschek. 2007. Bioproduction of butanol from biomass: From genes to bioreactors. Curr. Opin. Biotechnol. 18: 220-227   DOI   ScienceOn
22 Awang, G. M., G. A. Jones, and W. M. Ingledew. 1988. The acetone-butanol-ethanol fermentation. Crit. Rev. Microbiol. 15 Suppl 1: S33-67   DOI   PUBMED
23 Ezeji, T. C., M. Groberg, N. Qureshi, and H. P. Blaschek. 2003. Continuous production of butanol from starch-based packing peanuts. Appl. Biochem. Biotechnol. 105-108: 375-382   DOI   ScienceOn
24 Purwadi, R., C. Niklasson, and M. J. Taherzadeh. 2004. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J. Biotechnol. 114: 187-198   DOI   ScienceOn
25 Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39: 31-130   DOI   PUBMED   ScienceOn
26 Qureshi, N., B. C. Saha, and M. A. Cotta. 2007. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst. Eng. 30: 419-427   DOI   ScienceOn
27 Zverlov, V. V., O. Berezina, G. A. Velikodvorskaya, and W. H. Schwarz. 2006. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 71: 587-597   DOI   ScienceOn
28 Durre, P., R. J. Fischer, A. Kuhn, K. Lorenz, W. Schreiber, B. Sturzenhofecker, S. Ullmann, K. Winzer, and U. Sauer. 1995. Solventogenic enzymes of Clostridium acetobutylicum: Catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol. Rev. 17: 251-262   DOI   PUBMED
29 Monot, F., J. R. Martin, H. Petitdemange, and R. Gay. 1982. Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl. Environ. Microbiol. 44: 1318-1324   PUBMED   ScienceOn