Continuous Cell-Free Protein Synthesis Using Glycolytic Intermediates as Energy Sources

  • Kim, Ho-Cheol (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Kim, Tae-Wan (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Park, Chang-Gil (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Oh, In-Seok (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Park, Kyung-Moon (Department of Chemical System Engineering, Hongik University) ;
  • Kim, Dong-Myung (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
  • Published : 2008.05.31

Abstract

In this work, we demonstrate that glycolytic intermediates can serve as efficient energy sources to regenerate ATP during continuous-exchange cell-free (CECF) protein synthesis reactions. Through the use of an optimal energy source, approximately 10 mg/ml of protein was generated from a CECF protein synthesis reaction at greatly reduced reagent costs. Compared with the conventional reactions utilizing phosphoenol pyruvate as an energy source, the described method yields 10-fold higher productivity per unit reagent cost, making the techniques of CECF protein synthesis a more realistic alternative for rapid protein production.

Keywords

References

  1. Calhoun, K. A. and J. R. Swartz. 2005. An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol. Prog. 21: 1146-1153 https://doi.org/10.1021/bp050052y
  2. Fedrico, K., C. Geoffrey, and K. Wieslaw. 2005. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 23: 150-156 https://doi.org/10.1016/j.tibtech.2005.01.003
  3. Hahn, G. H. and D. M. Kim. 2006. Production of milligram quantities of recombinant proteins from PCR-amplified DNAs in a continuous-exchange cell-free protein synthesis system. Anal. Biochem. 355: 151-153 https://doi.org/10.1016/j.ab.2006.05.004
  4. Kigawa, T., T. Yabuki, Y. Yoshida, M. Tsutsui, Y. Ito, T. Shibata, and S. Yokoyama. 1999. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442: 15-19 https://doi.org/10.1016/S0014-5793(98)01620-2
  5. Kim, D. M. and C. Y. Choi. 1996. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog. 12: 645-649 https://doi.org/10.1021/bp960052l
  6. Kim, D. M. and J. R. Swartz. 2000. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 16: 385-390 https://doi.org/10.1021/bp000031y
  7. Kim, D. M., C. Y. Chio, J. H. Ahn, T. W. Kim, N. Y. Kim, I. S. Oh, and C. G. Park. 2006. Development of a rapid and productive cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 11: 235-239 https://doi.org/10.1007/BF02932036
  8. Kim, R. G. and C. Y. Choi. 2000. Expression-independent consumption of substrates in cell-free expression system for Escherichia coli. J. Biotechnol. 84: 27-32 https://doi.org/10.1016/S0168-1656(00)00326-6
  9. Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim. 2006. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol. 126: 554-561 https://doi.org/10.1016/j.jbiotec.2006.05.014
  10. Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, H. C. Kim, and D. M. Kim. 2007. An economical and highly productive cellfree protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source. J. Biotechnol. 130: 389-393 https://doi.org/10.1016/j.jbiotec.2007.05.002
  11. Kitaoka, Y., N. Nishimura, and M. Niwano. 1996. Cooperativity of stabilized mRNA and enhanced translation activity in the cell-free system. J. Biotechnol. 48: 1-8 https://doi.org/10.1016/0168-1656(96)01389-2
  12. Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
  13. Nakano, H., T. Shinbata, R. Okumura, S. Sekiguchi, M. Fujishiro, and T. Yamane. 1998. Efficient coupled transcription/ translation from PCR template by a hollow-fiber membrane bioreactor. Biotechnol. Bioeng. 64: 194-199 https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<194::AID-BIT8>3.0.CO;2-5
  14. Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  15. Sawasaki, T., Y. Hasegawa, M. Tsuchimochi, N. Kamura, T. Ogasawara, T. Kuroita, and Y. Endo. 2002. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514: 102-105 https://doi.org/10.1016/S0014-5793(02)02329-3
  16. Spirin, A. S., V. I. Baranov, L. A. Ryabova, S. Y. Ovodov, and Y. B. Alakhov. 1988. A continuous cell-free translation system capable of producing polypeptides in high yields. Science 242: 1162-1164 https://doi.org/10.1126/science.3055301
  17. Spirin, A. S. 2004. High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol. 22: 538-545 https://doi.org/10.1016/j.tibtech.2004.08.012
  18. Swartz, J. R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12: 195-201 https://doi.org/10.1016/S0958-1669(00)00199-3