Browse > Article

Continuous Cell-Free Protein Synthesis Using Glycolytic Intermediates as Energy Sources  

Kim, Ho-Cheol (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Kim, Tae-Wan (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
Park, Chang-Gil (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Oh, In-Seok (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
Park, Kyung-Moon (Department of Chemical System Engineering, Hongik University)
Kim, Dong-Myung (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 885-888 More about this Journal
Abstract
In this work, we demonstrate that glycolytic intermediates can serve as efficient energy sources to regenerate ATP during continuous-exchange cell-free (CECF) protein synthesis reactions. Through the use of an optimal energy source, approximately 10 mg/ml of protein was generated from a CECF protein synthesis reaction at greatly reduced reagent costs. Compared with the conventional reactions utilizing phosphoenol pyruvate as an energy source, the described method yields 10-fold higher productivity per unit reagent cost, making the techniques of CECF protein synthesis a more realistic alternative for rapid protein production.
Keywords
Glycolysis; ATP regeneration; S12 extract; cell-free protein synthesis; fructose-1,6-bisphosphate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Kigawa, T., T. Yabuki, Y. Yoshida, M. Tsutsui, Y. Ito, T. Shibata, and S. Yokoyama. 1999. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442: 15-19   DOI   ScienceOn
2 Kim, D. M. and C. Y. Choi. 1996. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog. 12: 645-649   DOI   ScienceOn
3 Kim, D. M., C. Y. Chio, J. H. Ahn, T. W. Kim, N. Y. Kim, I. S. Oh, and C. G. Park. 2006. Development of a rapid and productive cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 11: 235-239   과학기술학회마을   DOI
4 Kitaoka, Y., N. Nishimura, and M. Niwano. 1996. Cooperativity of stabilized mRNA and enhanced translation activity in the cell-free system. J. Biotechnol. 48: 1-8   DOI
5 Spirin, A. S. 2004. High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol. 22: 538-545   DOI   ScienceOn
6 Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim. 2006. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol. 126: 554-561   DOI   ScienceOn
7 Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549   과학기술학회마을
8 Spirin, A. S., V. I. Baranov, L. A. Ryabova, S. Y. Ovodov, and Y. B. Alakhov. 1988. A continuous cell-free translation system capable of producing polypeptides in high yields. Science 242: 1162-1164   DOI
9 Swartz, J. R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12: 195-201   DOI   ScienceOn
10 Fedrico, K., C. Geoffrey, and K. Wieslaw. 2005. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 23: 150-156   DOI   ScienceOn
11 Sawasaki, T., Y. Hasegawa, M. Tsuchimochi, N. Kamura, T. Ogasawara, T. Kuroita, and Y. Endo. 2002. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514: 102-105   DOI   ScienceOn
12 Kim, R. G. and C. Y. Choi. 2000. Expression-independent consumption of substrates in cell-free expression system for Escherichia coli. J. Biotechnol. 84: 27-32   DOI
13 Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, H. C. Kim, and D. M. Kim. 2007. An economical and highly productive cellfree protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source. J. Biotechnol. 130: 389-393   DOI   ScienceOn
14 Nakano, H., T. Shinbata, R. Okumura, S. Sekiguchi, M. Fujishiro, and T. Yamane. 1998. Efficient coupled transcription/ translation from PCR template by a hollow-fiber membrane bioreactor. Biotechnol. Bioeng. 64: 194-199   DOI   ScienceOn
15 Hahn, G. H. and D. M. Kim. 2006. Production of milligram quantities of recombinant proteins from PCR-amplified DNAs in a continuous-exchange cell-free protein synthesis system. Anal. Biochem. 355: 151-153   DOI   ScienceOn
16 Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998   과학기술학회마을
17 Kim, D. M. and J. R. Swartz. 2000. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 16: 385-390   DOI   ScienceOn
18 Calhoun, K. A. and J. R. Swartz. 2005. An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol. Prog. 21: 1146-1153   DOI   ScienceOn