Antifungal Activity of Valinomycin, a Peptide Antibiotic Produced by Streptomyces sp. Strain M10 Antagonistic to Botrytis cinerea

  • Park, Cheol-Nam (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jung-Min (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Dong-Ho (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Beom-Seok (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2008.05.31

Abstract

A strain of Streptomyces sp. (M10) antagonistic to Botrytis cinerea was isolated from orchard soil obtained from Jeju Island, Korea. An antifungal substance (CN1) was purified from the culture extracts of the strain, and then identified as valinomycin through extensive spectroscopic analyses. Valinomycin showed potent in vitro antifungal activity against Botrytis cinerea and also in vivo control efficacy against Botrytis blight development in cucumber plants. Overall, the disease control efficacy of valinomycin was similar to that of vinclozolin, a commercial fungicide. This study provides the first report on the disease control efficacy of valinomycin against Botrytis blight.

Keywords

References

  1. Andersson, M. A., R. Mikkola, R. Kroppenstedt, F. A. Rainey, J. Peltola, J. Helin, K. Sivonen, and M. S. Salkinoja-Salonen. 1998. Mitochondrial toxin produced by Streptomyces griseus strains isolated from indoor environment is valinomycin. Appl. Environ. Microbiol. 64: 4767-4773
  2. Barnes, S. E. and M. W. Shaw. 2002. Factors affecting symptom production by latent Botrytis cinerea in Primula $\times$ polyantha. Plant Pathol. 51: 746-754 https://doi.org/10.1046/j.1365-3059.2002.00761.x
  3. Brockmann, H. and G. Schmidt-Kastner. 1955. Valinomycin. I. uber Antibiotica aus Actinomyceten. XXVII. Chem. Ber. 88: 57 https://doi.org/10.1002/cber.19550880111
  4. Cheng, Y.-Q. 2006. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem 7: 471-477 https://doi.org/10.1002/cbic.200500425
  5. Choi, G. J., J. Kim, K. S. Jang, H. K. Lim, I. Park, S. Shin, and K. Y. Cho. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16: 491-495
  6. Choi, G. J., H. J. Lee, and K. Y. Cho. 1996. Lipid peroxidation and membrane disruption by vinclozolin in dicarboximidesusceptible and -resistant isolates of Botrytis cinerea. Pesticide Biochem. Physiol. 55: 29-39 https://doi.org/10.1006/pest.1996.0032
  7. Haynes, D. H., A. Kowalsky, and B. Pressman. 1969. Application of nuclear magnetic resonance to the conformational changes in valinomycin during complexation. J. Biol. Chem. 244: 502-505
  8. Heisey, R. M., J. Huang, S. K. Mishra, J. E. Keller, J. R. Miller, A. R. Putnam, and T. D. J. D'Silva. 1988. Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36: 1283-1286 https://doi.org/10.1021/jf00084a039
  9. Kim, B. S. and B. K. Hwang. 2003. Biofungicides. In D. K. Arora, P. D. Bridge, and D. Bhatnager (eds.). Handbook of Fungal Biotechnology. Dekker, New York
  10. Kim, C. S., E. K. Lim, K. H. Choi, H. G. Kong, D. W. Kim, S. Lee, B. J. Moon, S. H. Lee, and H. J. Kim. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17: 438-444
  11. Koloditskaia, A. T., I. N. Blinova, G. M. Smirnova, and A. S. Khokhlov. 1975. Actinomyces cyaneofuscatus, producer of valinomycin. A study of its pigments and antibiotics. Izv Akad Nauk SSSR Biol. 5: 694-700
  12. Maruyama, M., S. Yamauchi, K. Akiyama, T. Sugahara, T. Kishida, and Y. Koba. 2007. Antibacterial activity of virgatusinrelated compound. Biosci. Biotechnol. Biochem. 71: 677-680 https://doi.org/10.1271/bbb.60429
  13. Murray, T., F. C. Leighton, and B. Seddon. 1986. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Lett. Appl. Microbiol. 3: 5-7 https://doi.org/10.1111/j.1472-765X.1986.tb01534.x
  14. Nair, M. G., A. Chandra, and D. L. Thorogood. 1994. Gopalamicin, an antifungal macrodiolide produced by soil actinomycetes. J. Agric. Food Chem. 42: 2308-2310 https://doi.org/10.1021/jf00046a043
  15. Paananen, A., R. Mikkola, T. Sareneva, S. Matikainen, M. Andersson, I. Julkunen, M. S. Salkinoja-Salonen, and T. Timonen. 2000. Inhibition of human NK cell function by valinomycin, a toxin from Streptomyces griseus in indoor air. Infect. Immun. 68: 165-169 https://doi.org/10.1128/IAI.68.1.165-169.2000
  16. Perkins, J. B., S. K. Guterman, C. L. Howitt, V. E. N. Williams, and J. Pero. 1990. Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. J. Bacteriol. 172: 3108-3116 https://doi.org/10.1128/jb.172.6.3108-3116.1990
  17. Pettit, G. R., R. Tan, N. Melody, J. M. Kielty, R. K. Pettit, D. L. Herald, B. E. Tucker, L. P. Mallavia, D. L. Doubek, and J. M. Schmidt. 1999. Antineoplastic agents. Part 409: Isolation and structure of montanastatin from a terrestrial Actinomycete. Bioorg. Med. Chem. 7: 895-899 https://doi.org/10.1016/S0968-0896(99)00024-3
  18. Pressman, B. 1976. Biological applications of ionophores. Annu. Rev. Biochem. 45: 501-530 https://doi.org/10.1146/annurev.bi.45.070176.002441
  19. Samson-Himmelstjerna, G. V., A. Harder, N. C. Sangster, and G. C. Coles. 2005. Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic resistant nematodes in sheep and cattle. Parasitology 130: 343-347 https://doi.org/10.1017/S0031182004006523
  20. Schaal, K. P. 1985. Identification of clinically significant Actinomycetes and related bacteria using chemical techniques. In M. Goodfellow and D. E. Minnikin (eds.). Chemical Methods in Bacterial Systematics. Academic Press, London
  21. Seo, Y. S., J. C. Kim, B. S. Kim, Y. W. Lee, and K. Y. Cho. 1996. Isolation and identification of antifungal substances produced by Fusarium sp. BYA-1. Plant Pathol. J. 12: 72-79
  22. Sharom, F. J., P. Lu, R. Liu, and X. Yu. 1988. Linear and cyclic peptides as substrates and modulators of Pglycoprotein: Peptide binding and effects on drug transport and accumulation. Biochem. J. 333: 621-630
  23. Shin, D., M. S. Park, S. Jung, M. S. Lee, K. H. Lee, K. S. Bae, and S. B. Kim. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17: 1361-1368
  24. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340 https://doi.org/10.1099/00207713-16-3-313
  25. Teplova, V. V., R. Mikkola, A. A. Tonshin, N. L. Saris, and M. S. Salkinoja-Salonen. 2006. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 210: 39-46 https://doi.org/10.1016/j.taap.2005.06.012
  26. Waksman, S. A. 1961. Classification, Identification and Descriptions of Genera and Species. The Williams & Willkins Co., Baltimore
  27. Wardlow, L. R. and T. M. O'Neill. 1992. Management strategies for controlling pests and diseases in glasshouse crops. Pestic. Sci. 36: 341-347 https://doi.org/10.1002/ps.2780360406
  28. Williams, S. T., M. E. Saharpe, J. G. Holt, R. G. E. Murray, D. J. Brener, N. R. Krieg, J. W. Mouldar, N. Pfennig, P. H. A. Sneath, and J. T. Staley. 1989. Bergery's Manual of Systematic Bacteriology, Vol. 4. The Williams & Wilkins Co., Baltimore
  29. Yun, B., E. M. Kwon, J. Kim, and S. H. Yu. 2007. Antifungal cyclopeptolide from fungal saprophytic antagonist Ulocladium atrum. J. Microbiol. Biotechnol. 17: 1217-1220