• 제목/요약/키워드: fructose-1,6-bisphosphate

검색결과 18건 처리시간 0.019초

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • 제39권2호
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Crystallographic snapshots of active site metal shift in E. coli fructose 1,6-bisphosphate aldolase

  • Tran, Huyen-Thi;Lee, Seon-Hwa;Ho, Thien-Hoang;Hong, Seung-Hye;Huynh, Kim-Hung;Ahn, Yeh-Jin;Oh, Deok-Kun;Kang, Lin-Woo
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.681-686
    • /
    • 2016
  • Fructose 1,6-bisphosphate aldolase (FBA) is important for both glycolysis and gluconeogenesis in life. Class II (zinc dependent) FBA is an attractive target for the development of antibiotics against protozoa, bacteria, and fungi, and is also widely used to produce various high-value stereoisomers in the chemical and pharmaceutical industry. In this study, the crystal structures of class II Escherichia coli FBA (EcFBA) were determined from four different crystals, with resolutions between $1.8{\AA}$ and $2.0{\AA}$. Native EcFBA structures showed two separate sites of Zn1 (interior position) and Zn2 (active site surface position) for $Zn^{2+}$ ion. Citrate and TRIS bound EcFBA structures showed $Zn^{2+}$ position exclusively at Zn2. Crystallographic snapshots of EcFBA structures with and without ligand binding proposed the rationale of metal shift at the active site, which might be a hidden mechanism to keep the trace metal cofactor $Zn^{2+}$ within EcFBA without losing it.

저온 처리한 벼 유식물에서 탄수화물 대사의 변화 (Alteration of Carbohydrate Metabolism in Rice Seedlings under Low Temperature)

  • 홍순복
    • Journal of Plant Biology
    • /
    • 제34권2호
    • /
    • pp.113-119
    • /
    • 1991
  • 저온 처리($4^{\circ}C$)가 벼(Oryza sativa L. cv. Samjin) 유식물 잎의 환원당, 설탕, 녹말 및 fructose-2,6-bisphosphate(F-2,$6-P_2$)의 함량에 미치는 영향을 조사하였으며, 이와 관련있는 amylase, invertase 및 fructose-1,6-bisphosphatase(FB-Pase)의 활성변화를 중심으로 3일 동안 측정하였다. 3일 동안 저온처리한 벼 유식물에서의 환원당과 설탕의 함량은 증가하였고, 수용성 녹말과 비수용성 녹말의 함량은 감소하였다. 한편, amylase의 활성은 증가하였고 acid invertase의 활성을 감소하였으며, alkaline invertase의 활성은 변화가 없었다. 스트로마 및 시토졸 FBPase의 활성은 감소하였다. 이에 부합되는 것으로 F-2,$6-P_2$의 함량이 감소하였다. 그러므로, 저온처리로 환원당의 함량이 증가한 것은 녹말 분해능의 증가에 기인한 것으로 사료되며, 설탕의 함량이 증가한 것은 설탕 분해능의 저하와 F-2,$6-P_2$의 함량감소에 따른 시토졸 FBPase의 활성증가에 기인한 것으로 해석된다. 또한 저온에 의한 이러한 탄수화물 대사의 변화는 벼 유식물의 저온 손상을 일부나마 방지하려는 기작이라 해석된다.

  • PDF

Altered Expression of Pyrophosphate: Fructose-6-Phosphate 1-Phosphotransferase Affects the Growth of Transgenic Arabidopsis Plants

  • Lim, Hyemin;Cho, Man-Ho;Jeon, Jong-Seong;Bhoo, Seong Hee;Kwon, Yong-Kook;Hahn, Tae-Ryong
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.641-649
    • /
    • 2009
  • Pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the reversible interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate, a key step in the regulation of the metabolic flux toward glycolysis or gluconeogenesis. To examine the role of PFP in plant growth, we have generated transgenic Arabidopsis plants that either overexpress or repress Arabidopsis PFP subunit genes. The overexpressing lines displayed increased PFP activity and slightly faster growth relative to wild type plants, although their photosynthetic activities and the levels of metabolites appeared not to have significantly changed. In contrast, the RNAi lines showed significantly retarded growth in parallel with the reduced PFP activity. Analysis of photosynthetic activity revealed that the growth retardation phenotype of the RNAi lines was accompanied by the reduced rates of $CO_2$ assimilation. Microarray analysis of our transgenic plants further revealed that the altered expression of $AtPFP{\beta}$ affects the expression of several genes involved in diverse physiological processes. Our current data thus suggest that PFP is important in carbohydrate metabolism and other cellular processes.

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

Roles of the Residues Lys115 and Tyr116 in the Binding of an Allosteric Inhibitor AMP to Pea Cytosolic Fructose-1,6-bisphosphatase

  • Jang, Hye-Kyung;Cho, Man-Ho;Kwon, Yong-Kook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • Journal of Applied Biological Chemistry
    • /
    • 제51권2호
    • /
    • pp.45-49
    • /
    • 2008
  • Cytosolic fructose-1,6-bisphosphatase (cFBPase) in plants is a key regulatory enzyme in the photosynthetic sucrose biosynthesis. Plant cFBPases, like the mammalian FBPases, are inhibited by adenosine 5'-monophosphate (AMP) and fructose-2,6-bisphosphate (Fru-2,6-$P_2$). In the mammalian FBPases, Lys112 and Tyr113 play important roles in the AMP binding. To understand roles of the corresponding residues, Lys115 and Tyr116, in pea cFBPase, the mutant cFBPases were generated by site-directed mutagenesis. The alterations of Lys115 to Gin and Tyr116 to Phe displayed small changes in $K_m$ and $K_i$ for Fru-2,6-$P_2$, indicating that the mutation causes minor effects on the enzyme catalysis and Fru-2,6-$P_2$ binding, whereas resulted in higher than 500-fold increase of $[AMP]_{0.5}$ compared with that of the wild-type enzyme. Results indicate the residues Lys115 and Tyr116 play important roles in the binding of AMP to the allosteric site of the pea cFBPase.

Protective and Anti-Pathology Effects of Sm Fructose-1,6-Bisphosphate Aldolase-Based DNA Vaccine against Schistosoma mansoni by Changing Route of Injection

  • Saber, Mohamed;Diab, Tarek;Hammam, Olft;Karim, Amr;Medhat, Amina;Khela, Mamdouh;El-Dabaa, Ehab
    • Parasites, Hosts and Diseases
    • /
    • 제51권2호
    • /
    • pp.155-163
    • /
    • 2013
  • This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) ($50{\mu}g/mouse$). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and antipathology vaccine candidate against S. mansoni infection.

Characterization and Mapping of the Bovine FBP1 Gene

  • Guo, H.;Liu, W-S.;Takasuga, A.;Eyer, K.;Landrito, E.;Xu, Shang-zhong;Gao, X.;Ren, H-Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1319-1326
    • /
    • 2007
  • Fructose-1,6-bisphosphatase (FBP1) is a key regulatory enzyme of gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-bisphosphate to generate fructose-6-phosphate and inorganic phosphate. Deficiency of fructose-1, 6-bisphosphatase is associated with fasting hypoglycemia and metabolic acidosis. The enzyme has been shown to occur in bacteria, fungi, plants and animals. The bovine FBP1 gene was cloned and characterized in this study. The full length (1,241 bp) FBP1 mRNA contained an open reading frame (ORF) encoding a protein of 338 amino acids, a 63 bp 5' untranslated region (UTR) and a 131 bp 3' UTR. The bovine FBP1 gene was 89%, 85%, 82%, 82% and 74% identical to the orthologs of pig, human, mouse, rat and zebra fish at mRNA level, and 97%, 96%, 94%, 93% and 91% identical at the protein level, respectively. This gene was broadly expressed in cattle with the highest level in testis, and the lowest level in heart. An intronic single nucleotide polymorphism (SNP) (A/G) was identified in the $5^{th}$ intron of the bovine FBP1 gene. Genotyping of 133 animals from four beef breeds revealed that the average frequency for allele A (A-base) was 0.7897 (0.7069-0.9107), while 0.2103 (0.0893-0.2931) for allele B (G-base). Our preliminary association study indicated that this SNP is significantly associated with traits of Average Daily Feed Intake (ADFI) and Carcass Length (CL) (p<0.01). In addition, the FBP1 gene was assigned on BTA8 by a hybrid radiation (RH) mapping method.

Continuous Cell-Free Protein Synthesis Using Glycolytic Intermediates as Energy Sources

  • Kim, Ho-Cheol;Kim, Tae-Wan;Park, Chang-Gil;Oh, In-Seok;Park, Kyung-Moon;Kim, Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.885-888
    • /
    • 2008
  • In this work, we demonstrate that glycolytic intermediates can serve as efficient energy sources to regenerate ATP during continuous-exchange cell-free (CECF) protein synthesis reactions. Through the use of an optimal energy source, approximately 10 mg/ml of protein was generated from a CECF protein synthesis reaction at greatly reduced reagent costs. Compared with the conventional reactions utilizing phosphoenol pyruvate as an energy source, the described method yields 10-fold higher productivity per unit reagent cost, making the techniques of CECF protein synthesis a more realistic alternative for rapid protein production.

대장균으로 부터 생산된 L-lactate Dehydrogenase의 정제 및 특성 (Purification and Properties of Thermostable L-Lactate Dehydrogenase Produced by Escherichia Coli)

  • Song, Jae-Young;Kim, Kyoug-Sook
    • 한국식품영양과학회지
    • /
    • 제23권6호
    • /
    • pp.964-972
    • /
    • 1994
  • The 4.3-kb gene coding for L-lactate dehydrogenase of Bacillus stearothermophilus has been subcloned and expressed in E. coli cells. The enzyme was purified 200-fold with 25% yield by heat treatment , DEAE-Sephadex, and NAD++ -Sepharose CL-4B affinity chromatography followed by gel filtration through Sephadex G-200 . The molecular weight of the purfied enzyme was estimated to be about 35, 000 and 140, 000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively. indicating that the enzyme is composed of four identical subunits. THe enzyme for pyruvate reduction and lactate oxdiation was stable at 60 and 75$^{\circ}C$ for 30 min, and the optimal temperatures for both reactions were 60 and 7$0^{\circ}C$, respectively. The enzyme had an optimal pH at 5.5 and 8.5 in pyruvate reduction and lactate oxidation, respectively. The pH stability of enzyme of pyruvate reduction was table between pH 5 and 7. more than 90% of enzyme activity was lost at 1mM FeSO4 and p-chloromercuribonzoate. The maximal activation of the enzyme was obtained with 0.8mM fructose 1, 6-bisphosphate.

  • PDF