Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET

  • Na, Min-Ki (Department of Electronics Eng., Chungnam National University) ;
  • Han, In-Shik (Department of Electronics Eng., Chungnam National University) ;
  • Choi, Won-Ho (Department of Electronics Eng., Chungnam National University) ;
  • Kwon, Hyuk-Min (Department of Electronics Eng., Chungnam National University) ;
  • Ji, Hee-Hwan (MagnaChip Semiconductor Ltd.) ;
  • Park, Sung-Hyung (MagnaChip Semiconductor Ltd.) ;
  • Lee, Ga-Won (Department of Electronics Eng., Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Eng., Chungnam National University)
  • 발행 : 2008.04.25

초록

본 논문에서는 Contact Etch Stop Layer (CESL)인 nitride film의 mechanical stress에 의해 인가되는 channel stress가 소자 특성에 미치는 영향에 대해 분석하였다. 잘 알려진 바와 같이 NMOS는 tensile stress와 PMOS에서는 compressive stress가 인가되었을 경우 drain current가 증가하였으며 그 원인을 체계적으로 분석하였다. NMOS의 경우 tensile stress가 인가됨으로써 back scattering ratio ($\tau_{sat}$)의 감소와 thermal injection velocity ($V_{inj}$)의 증가로 인해 mobility가 개선됨을 확인하였다. 또한 $\tau_{sat}$, 의 감소는 온도에 따른 mobility의 감소율이 작고, 그에 따른 mean free path ($\lambda_O$)의 감소율이 작기 때문인 것으로 확인되었다. 한편 PMOS의 compressive stress 경우에는 tensile stress에 비해 온도에 따른 mobility의 감소율이 크기 때문에 channel back scattering 현상은 심해지지만 source에서의 $V_{inj}$가 큰 폭으로 증가함으로써 mobility가 개선됨을 확인 할 수 있었다. 따라서 CES-Layer에 의해 인가된 channel stress에 따른 소자 특성의 변화는 inversion layer에서의 channel back scattering 현상과 source에서의 thermal injection velocity에 매우 의존함을 알 수 있다.

In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.

키워드

참고문헌

  1. N. Motha and S. E. Thompson, "Mobility enhancement: The Next Nector To Extend Moore's Law", IEEE Circuit and Device Magazine, pp. 18-23, September/October 2005
  2. M. Lundstrom, "On The Mobility Versus Drain Current Relation For A Nanoscale Mosfet", IEEE Electron Device Letters, Vol. 22, No. 6, p. 293-295, June. 2001 https://doi.org/10.1109/55.924846
  3. M. Lundstrom, "Elementary Scattering Theory Of The Si Mosfet", IEEE Electron Device Letters, Vol. 18, No. 7, p. 361-363, July 1997 https://doi.org/10.1109/55.596937
  4. M. Lundstrom, Z. Ren and S. Datta, "Esssential Physics Of Carrier Transport In Nanoscale Mosfets", IEEE Electron Device, Vol. 49, No. 1, p. 133-141, January 2002 https://doi.org/10.1109/16.974760
  5. S. E. Thompson, et al., "A Logic Nanotechnology Featuring Strained-Silicon", IEEE Electron Device Letters, Vol. 25, No. 4, p. 191-193, April 2004 https://doi.org/10.1109/LED.2004.825195
  6. K. Uchida, T. Krishnamohan, K. C. Saraswat and Y. Nishi, "Physical Mechanisms Of Electron Mobility Enhancement In Uniaxial Stressed Mosfets And Impact Of Uniaxial Stress Engineering In Ballistic Regime", IEEE Electron Device Meeting, p. 129-132, December 2005
  7. S. Takagi, et al., "Device Characterizations And Physical Models Of Strained-Si Channel Cmos", IEEE 2004 Int. Conference on Microelectronic Test Structures, p. 133-138, March 2004
  8. M. D. Giles, et al., "Understanding Stress Enhanced Performance In Intel 90nm Cmos Technology', 2004 Symposium on VLSI Technology Digest of Technical Papers, p. 118-119, June 2004
  9. M. L. Lee, et al., "Strained Si, SiGe, and Ge Channels For High-Mobility Metal-Oxide- Semiconductor Field Effect Transistors", Journal of Applied Physics, Vol. 97, No. 1, p. 011101, January 2004 https://doi.org/10.1063/1.1819976
  10. S. E. Thompson, G. Sun, K. Wu, J. Lim and T. Nishida, "Key Differences For Process-Induced Uniaxial Vs. Substrate-Induced Biaxial Stressed Si And Ge Channel Mosfets", IEEE Electron Device Meeting, p. 221-224, December 2004
  11. H. N. Lin, H. W. Chen, C. H. Ko, C. H. Ge, H. C. Lin, T. Y. Huang, W. C. Lee and D. Tang, "The Impact Of Uniaxial Strain Engineering On Channel Backscattering In Nanoscale Mosfets", 2005 Symposium on VLSI Technology Digest of Technical Papers, p. 174-175, June 2005
  12. H. N. Lin, H. W. Chen, C. H. Ko, C. H. Ge, H. C. Lin, T. Y. Huang, W. C. Lee and D. Tang, "Channel Back Scattering Characteristics Of Uniaxially Strained Nanoscale Cmosfets", IEEE Electron Device Letters, Vol. 26, No. 9, p. 676-678, September 2005 https://doi.org/10.1109/LED.2005.853640
  13. J. S. Lim, S. E. Thompson and J. G. Fossum, "Comparison Of Threshold-Voltage Shifts For Uniaxial And Biaxial Tensile-Stressed N-Mosfets", IEEE Electron Device Letters, Vol. 25, No. 11, p. 731-733, November. 2004 https://doi.org/10.1109/LED.2004.837581