DOI QR코드

DOI QR Code

자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire

  • Shim, Woo-Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Do-Hun (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyoung-Il (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeon, Kye-Jin (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Woo-Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Chang, Joon-Yeon (Korea Institute of Science and Technology (KIST)) ;
  • Han, Suk-Hee (Korea Institute of Science and Technology (KIST)) ;
  • Jeung, Won-Young (Korea Institute of Science and Technology (KIST)) ;
  • Johnson, Mark (Naval Research Laboratory)
  • 발행 : 2007.08.31

초록

단결정 Bi단일 나노선의 정상 자기 저항(ordinary magnetoresistance) 특성을 $2{\sim}300K$에서 4 단자법으로 측정하였다. I-V 측정을 통해 전기적 오믹 형성을 확인하였고, 2 K과 300 K에서 비저항이 각각 $1.0{\times}10^{-4}$$8.2{\times}10^{-5}{\Omega}{\cdot}cm$으로 측정되었다. 수직(transverse) 및 수평(longitudinal) 자기저항비(MR ratio)가 110 K와 2 K에서 각각 현재까지 보고된 MR 중 가장 큰 2496%와 -38%으로 관찰되었으며, 이 결과는 자발 성장법으로 성장된 Bi 나노선의 결정성이 매우 우수한 단결정임을 증명한다. simple two band(STB) 모델을 통해 Bi 나노선의 수직 및 수평 정상 자기 저항(OMR) 거동이 온도에 따른 페르미 준위(Fermi level)와 밴드 겹침(band overlap)등의 전자 구조 변화 및 운반자 농도 변화로 잘 설명된다.

We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.

키워드

참고문헌

  1. J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B, 61, 2921 (2000) https://doi.org/10.1103/PhysRevB.61.2921
  2. Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, Phys. Rev. B, 61, 4850 (2000) https://doi.org/10.1103/PhysRevB.61.4850
  3. Y. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, and J. Heremans, Appl. Phys. Lett., 76, 3944 (2000) https://doi.org/10.1063/1.126829
  4. W. Shim et al., to be published
  5. Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B, 62, 4610 (2000) https://doi.org/10.1103/PhysRevB.62.4610
  6. S. B. Cronin et al., Nanotech., 13, 653 (2002) https://doi.org/10.1088/0957-4484/13/5/322
  7. D. Choi, A. Balandin, M. Leung, G. Stupian, N. Presser, S. Chung, J. Heath, A. Khitun, and K. Wang, Appl. Phys. Lett., 89, 141503 (2006) https://doi.org/10.1063/1.2357847
  8. W. Shim et al., to be published
  9. K. Liu, C. L. Chien, P. C. Searson, and K. Y. Zhang, Appl. Phys. Lett., 73, 1436 (1998) https://doi.org/10.1063/1.122378
  10. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science, 284, 1335 (1999) https://doi.org/10.1126/science.284.5418.1335
  11. K. Liu, C. L. Chien, and P. C. Searson, Phys. Rev. B, 58, R14681 (1998) https://doi.org/10.1103/PhysRevB.58.R14681
  12. Y. Zhang, J. Small, M. Amori, and P. Kim, Phys. Rev. Lett., 94, 176803 (2005) https://doi.org/10.1103/PhysRevLett.94.176803
  13. S. Kasap, Principle of Electronic Materials and Devices (New York: McGraw-Hill, 2002)
  14. M. Cankurtaran, M. Onder, H. Celik, and T. Alper, J. Phys. C: Solid State Phys., 20, 3875 (1987) https://doi.org/10.1088/0022-3719/20/25/015
  15. C. Gallo, B. Chandrasekhar, and P. Sutter, J. Appl. Phys., 34, 144 (1963) https://doi.org/10.1063/1.1729056
  16. S. Cronin, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1999)

피인용 문헌

  1. Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Semimetal Bismuth Nanowire vol.18, pp.2, 2008, https://doi.org/10.3740/MRSK.2008.18.2.103