DOI QR코드

DOI QR Code

Capping층 재료에 따른 CoFeB/MgO/CoFeB 자기터널접합의 미세구조와 자기저항 특성

Microstructural and Magnetic Properties of CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction Depending on Capping Layer Materials

  • 정하창 (고려대학교 공과대학 신소재공학부) ;
  • 이성래 (고려대학교 공과대학 신소재공학부)
  • Chung, Ha-Chang (Division of Materials Science and Engineering, Korea University) ;
  • Lee, Seong-Rae (Division of Materials Science and Engineering, Korea University)
  • 발행 : 2007.08.31

초록

본 연구에서는 CoFeB/MgO/CoFeB 구조를 가지는 자기터널접합에서 capping층 재료의 종류와 열처리 시간에 따른 비정질 top CoFeB 자성층의 결정화 상태 및 자기터널접합의 자기적 특성 변화에 대한 연구결과를 비교 분석 하였다. Hcp(Hexagonal close-packed)의 결정구조를 가지는 Ru(002)를 capping층 재료로 사용한 자기터널접합 박막의 경우에는 열처리 이후 Ru과 인접한 부분의 top CoFeB이 bcc-CoFe(110)로 성장하는 반면, TiAl과 ZrAl을 capping층 재료로 사용한 자기터널접합의 경우는 열처리 이후 top CoFeB이 MgO와 epitaxial하게 bcc-CoFe(002)로 결정성장 하였다. 이로 인해 Ru을 사용한 자기터널접합의 터널자기 저항비(46.7%)보다 약 1.5배 높은 터널자기저항비(TiAl: 71.8%, ZrAl: 72.7%)를 나타내었다.

We investigated the effects of the capping layer materials on the crystallization of the amorphous top-CoFeB (t-CoFeB) electrode and the magnetoresistance properties of the magnetic tunnel junctions (MTJs). When the hcp(002)-textured Ru capping layer was used, the amorphous t-CoFeB was crystallized to bcc-CoFe(110). The CoFe(110)/Ru(002) texture relation can be minimized the lattice mismatch down to 5.6%. However, when the fine polycrystalline but almost amorphous TiAl or amorphous ZrAl were used, the amorphous t-CoFeB was crystallized to bcc-CoFe(002). When the amorphous capping materials were used, the evolution of the t-CoFeB texture was affected mainly by the MgO(001) texture. Consequently, the M ratios of the annealed MTJ capped with the ZrAl and TiAl (72.7 and 71.8%) are relatively higher than that of the MTJ with Ru capping layer (46.7%). In conclusions, the texture evolution of the amorphous t-CoFeB during the post deposition annealing could be controlled by the crystallinity of the adjacent capping layer and in turn, it affects the TMR ratio of MTJs.

키워드

참고문헌

  1. Y. S. Choi, K. Tsunekawa, Y. Nagamine, and D. Djayaprawira, J. Appl. Phys., 101, 013907 (2007) https://doi.org/10.1063/1.2407270
  2. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B, 63, 054416 (2001)
  3. J. Mathon and A. Umersky, Phy. Rev. B, 63, 220403R (2001) https://doi.org/10.1103/PhysRevB.63.220403
  4. S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, Jpn. J. Appl. Phys., 43, L588 (2004) https://doi.org/10.1143/JJAP.43.L588
  5. C. Park, Y.-H. Wang, D. E. Laughlin, and J.-G. Zhu, IEEE Trans. Mag., 42, 2639 (2006)
  6. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett., 89, 062507 (2006) https://doi.org/10.1063/1.2335368
  7. J.-O. Song, S.-R. Lee, and H.-J. Shin, IEEE Trans. Magn., 41, 2944 (2005)
  8. S.-R. Lee, C.-M. Choi, and Y. K. Kim, Appl. Phys. Lett., 83, 317 (2003)
  9. X.-G. Zhang and W. H. Butler, Phys. Rev. B, 70, 1724407 (2004)
  10. H. G. Cho, Y. K. Kim, and S.-R. Lee, J. Appl. Phys., 91, 8581 (2002)