• 제목/요약/키워드: nonlinear balance equation

검색결과 45건 처리시간 0.022초

BIFURCATION THEORY FOR A CIRCULAR ARCH SUBJECT TO NORMAL PRESSURE

  • Bang, Keumseong;Go, JaeGwi
    • Korean Journal of Mathematics
    • /
    • 제14권1호
    • /
    • pp.113-123
    • /
    • 2006
  • The arches may buckle in a symmetrical snap-through mode or in an asymmetry bifurcation mode if the load reaches a certain value. Each bifurcation curve develops as pressure increases. The governing equation is derived according to the bending theory. The balance of forces provides a nonlinear equilibrium equation. Bifurcation theory near trivial solution of the equation is developed, and the buckling pressures are investigated for various spring constants and opening angles.

  • PDF

Periodic solutions of the Duffing equation

  • Tezcan, Jale;Hsiao, J. Kent
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.593-602
    • /
    • 2008
  • This paper presents a new linearization algorithm to find the periodic solutions of the Duffing equation, under harmonic loads. Since the Duffing equation models a single degree of freedom system with a cubic nonlinear term in the restoring force, finding its periodic solutions using classical harmonic balance (HB) approach requires numerical integration. The algorithm developed in this paper replaces the integrals appearing in the classical HB method with triangular matrices that are evaluated algebraically. The computational cost of using increased number of frequency components in the matrixbased linearization approach is much smaller than its integration-based counterpart. The algorithm is computationally efficient; it only takes a few iterations within the region of convergence. An example comparing the results of the linearization algorithm with the "exact" solutions from a 4th order Runge- Kutta method are presented. The accuracy and speed of the algorithm is compared to the classical HB method, and the limitations of the algorithm are discussed.

Nonlinear Dynamic Analysis of Fiber Movement

  • Shen Danfeng;Ye Guoming
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.191-194
    • /
    • 2006
  • This paper adopts nonlinear vibration method to analyze the fluctuation process of fiber movement. Based on Hamilton Principle, this paper establishes differential equation of fiber axial direction movement. Using variable-separating method, this paper separates time variable from space variable. By using the disperse movement equation of Galerkin method, this paper also discusses stable region of transition curve and points out those influencing factor and variation trend of fiber vibration.

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation

  • Javanmard, Mehran;Bayat, Mahdi;Ardakani, Alireza
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.439-449
    • /
    • 2013
  • In this study simply supported nonlinear Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads is investigated. A new kind of analytical technique for a non-linear problem called He's Energy Balance Method (EBM) is used to obtain the analytical solution for non-linear vibration behavior of the problem. Analytical expressions for geometrically non-linear vibration of Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads are provided. The effect of vibration amplitude on the non-linear frequency and buckling load is discussed. The variation of different parameter to the nonlinear frequency is considered completely in this study. The nonlinear vibration equation is analyzed numerically using Runge-Kutta $4^{th}$ technique. Comparison of Energy Balance Method (EBM) with Runge-Kutta $4^{th}$ leads to highly accurate solutions.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

선형진동계에 작용하는 비선형진흡진기에 관한 안정성해소 연구 (A Study of Stability Analysis on Nonlinear Dynamic Vibration Absorber Acting on Damped Main Vibration Systems)

  • 안찬우;박일수;박동환
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.62-68
    • /
    • 1992
  • In this study, a system coupled with the nonlinear dynamic vibration absorber was modelled, and its equation of motion was analized by the harmonic balance method to obtain the amplitude ratio. And also, the stability analysis was done by the Routh Hurwitz method. In the vibration systems coupled with the nonlinear dynamic vibration absorber, the unstable region and the jump phenomenon can be ramarkably affected by the damping ratio. The stable and unstable region that obtained to differential method excellently agreed to the result of the stability analysis of Routh Hurwitz.

  • PDF

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

단일 캠 구동기구의 동 안정성 해석 (Dynamic Stability Analysis of a Single Cam Drive Mechanism)

  • 김홍보;전혁수;이종원;박윤식
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.526-533
    • /
    • 1990
  • 본 연구에서는 단일 캠 구동기구의 안정성 해석을 위한 효율적인 방법이 제시 되고, 수치실험을 통하여 검증되었다. 우선 단일 캠 구동기구를 묘사하는 비선형 방 정식이 유도되고, 동안정성에 관여하는 변수들이 무차원화되어 도입된다. 유도된 방 정식은 캠 축의 입력각에 대하여 선형화되고, 선형화된 방정식에 조화균형법(harmonic balance method)을 적용하여 동안정성 해석을 수행하였다.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • 호남수학학술지
    • /
    • 제33권2호
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.