Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite

실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성

  • Lee, Byoung-Chul (Hyperstructured Organic Materials Research Center, Deparment of polymer Science & Engineering, Dankook University) ;
  • Kang, Doo-Whan (Hyperstructured Organic Materials Research Center, Deparment of polymer Science & Engineering, Dankook University)
  • 이병철 (고차구조형 유기산업재료 연구센타 및 단국대학교 고분자공학과) ;
  • 강두환 (고차구조형 유기산업재료 연구센타 및 단국대학교 고분자공학과)
  • Published : 2007.01.31

Abstract

Maleic anhydride (MA) modified ethylene-propylene-diene terpolymer (MEPDM) was pre-pared from solution polymerization. MEPDM-g-PST copolymer was prepared by melt polymerization of male ate d EPDM and quaternary ammonium silyl polydimethylsiloxane -7,7,8,8- tetracyanoquinodimethane (TCNQ) adduct (PST) in internal mixer and MEPDM-g-PST/HDPE/CB (MPEC) was prepared by com-pounding HDPE, MEPDM-g-PST copolymer and carbon black (CB, 5, 10, 15, and 20 phr), and HDPE/ CB (PEC) by compounding HDPE and CB (5, 10, 15, and 20 phr), respectively. The structure of MEPDM-g-PST copolymer was confirmed by measuring the FTIR. The maximum grafting ratio of MA onto EPDM was 2.35%. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix show that CB in MPEC was better dispersed than that in PEC composite.

Maleic anhydride (MA)와 ethylene-propylene-diene terpolymer(EPDM)를 용액중합으로 말레화 EPDM(MEPDM)을 제조하고 이를 quaternary ammonium silyl Polydimethylsiloxane-TCNQ adduct(PST)와 internal mixer(Rheomix 600P)를 사용하여 용융중합으로 MEPDM-g-PST 공중합체를 제조하였다. 고밀도 폴리에틸렌(HDPE)과 MEPDM-g-PST 공중합체 및 카본블랙 (5, 10, 15 및 20 phr)을 배합하여 MEPDM-g-PST/HDPE/CB 복합체(MPEC)를 제조하였고 HDPE와 카본블랙(5, 10, 15 및 20 phr)을 배합하여 HDPE/CB 복합체(PEC)를 각각 제조하였다. MEPDM-g-PDMS 공중합체의 구조는 FTIR을 이용하여 확인하였으며 MA의 최대 그래프트율은 2.35%이였다. 제조한 복합체의 열적 특성을 측정한 결과 MPEC와 PEC는 유사한 열분해 온도를 나타내었다. MPEC의 인장강도는 카본블랙의 함량이 5에서 20 phr로 증가함에 따라 240에서 372 MPa로 증가하였으며 모폴로지를 분석한 결과 PEC보다 MPEC의 경우에서 카본블랙의 분산이 보다 더 잘 이루어졌음을 확인하였다.

Keywords

References

  1. Y. Chekanov, R. Ohnogi, S. Asai, and M. Sumita, Polym. J., 30, 381 (1998)
  2. E. Frydman, UK Patent 604,1951718 14S (1945)
  3. F. Kohler, US Patent 3,243,753 (1996)
  4. K. Ohe and Y. Natio, Jpn. J. Appl. Phys., 10, 99, (1971) https://doi.org/10.1143/JJAP.10.971
  5. H. Tang, Z. Y. Lio, J. H. Piao, X. F. Chen, Y. X. Lou, and S. H. Li, J. Appl. Polym. Sci., 51, 1159 (1994)
  6. S. J. Park and J. S. Kim, J. Colloid Interf. Sci., 244, 336 (2001) https://doi.org/10.1006/jcis.2001.7911
  7. S. J. Park and J. S. Jin, J. Colloid Interf. Sci., 242, 174 (2001) https://doi.org/10.1006/jcis.2001.7894
  8. T. J. Hall, US Patent 6,259,997 (2000)
  9. O. Breuer, R. Tchoudakov, M Nakkis, and A. Siegmann, J. Appl. Polym. Sci., 73, 1665 (1999)
  10. K. T. Chung, A. Sabo, and A. P. Pica, J. Appl. Phys., 53, 6867 (1982)
  11. Y. W. uu K. Oshima, T. Yamauchi, M. Shimomura, and S. Miyauchi, Synthetic Metal, 101, 451 (1999)
  12. J. Feng and C. M. Chan, Polymer, 41, 7279 (2000)
  13. D. W. Kang and B. C. Lee, Polymer(Korea), 30, 224 (2006)
  14. S. Cimmino, L. D'orazio, R. Greco, G. Maglio, M. Malinconico, C. Mancarella, E. Martuscelli, R. Palumbo, and G. Racosta, Polym. Eng. Sci., 24, 48 (1984)
  15. D. W. Kang, B. J. Kim, and D. S. Shim, J. Ind Eng. Chem., 6, 270 (2000)
  16. J. Kastner, T. Pichler, and H. Kuzmany, Chem. Phys. Lett., 221, 53 (1994)
  17. F. X. Wang, X. P. Gao, Z. W. Lu, S. H. Ye, J. Q. Qu, F. Wu, H. T. Yuan, and D. Y. Song, J. Alloys Compd., 370, 326 (2004) https://doi.org/10.1016/j.jallcom.2003.09.123