• Title/Summary/Keyword: maleated EPDM

Search Result 6, Processing Time 0.026 seconds

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Preparation and Properties of Polyorganosiloxane Modified Maleated EPDM/EPDM Rubber Vibration Isolator (Polyorganosiloxane 변성 말레화 EPDM/EPDM 방진고무의 제조와 그 특성)

  • Kang, Doo-Whan;Kim, So-Mi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • The surface of Alnico, one of the industrial dust waste, was treated with 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane (VMS) as a surface treating agent and used as the filler for vibration isolator rubber. Maleated EPDM prepared from bulk polymerization of EPDM with maleic anhydride was copolymerized with ${\alpha},{\omega}$-bis(3-aminopropyl)polydimethylsiloxane to obtain maleated EPDM-polydimethylsiloxane copolymer (MEPDM-PDMS). EPDM/Alnico/MEPDM-PDMS vibration isolator rubber was prepared from compounding with Alnico treated with surface treating agent, 25 and 50 phrs to EPDM, respectvely based on 1 to 10 wt% of MEPDM-PDMS to EPDM. From the measurement of the thermal properties to the rubber, the glass transition temperatures (Tg) for the rubber containing maleated EPDM-PDMS copolymer was slightly lower temperature, $33^{\circ}C$ than EPDM rubber, and also DMA results showed higher tan ${\delta}$ peak to the rubber prepared from compounding with EPDM-PDMS copolymer. From the results, rubber prepared using EPDM-PDMS copolymer had better vibration isolator property.

Preparation and PTC Characteristics of Poly(dimethylsiloxane) Modified EPDM/HDPE Composite (Poly(dimethylsiloxane) 변성 EPDM/HDPE 복합체의 제조와 PTC 특성)

  • Kang, Doo-Whan;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • Maleated ethylene-propylene-diene terpolymer (MEPDM) was prepared from solution polymerization of EPDM and maleic anhydride. MEPDM-grafted-poly (dimethylsiloxane) (PDMS) copolymer (MEPDM-g-PDMS) was prepared from copolymerization of MEPDM with $\alpha$,$\omega$-hydroxyl group terminated PDMS. The MEPDM-g-PDMS was compounded with HDPE and 4-ethoxybenzoic acid modified MWCNT at $180^{\circ}C$ and positive temperature coefficient (PCT) behavior of the MWCNT composite was investigated. Surface modification of MWCNT enabled it to be more uniformly dispersed in polymer matrix and decreased aggregation of particles. Electrical resistivity of the composite was abruptly increased at melting temperature and PTC intensity of 2.3 was obtained at 15% loading of surface modified CNT.

Preparation of EPDM/Polyamide12 Elastomers through Electron Beam Irradiation (전자선 조사를 통한 EPDM/Polyamide12 탄성체의 제조에 관한 연구)

  • Jung, Hyo Shin;Park, Jung Il;Kang, Phil-Hyun;Choi, Myung Chan;Chang, Young-Wook;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • Polyamide12 (PA12) is blended with ethylene propylene diene rubber (EPDM) at various compositions in the presence of maleated EPDM (mEPDM) to afford blend materials having the characteristics of thermoplastic elastomer (TPE). The EPDM/PA12 melt-blends are further irradiated with electron-beam (e-beam) at 0~100 kGy dosage, yielding selective crosslinking between EPDM chains while retaining melt-processibility originated from PA12 phase. mEPDM acts as a compatibilizer and affords additional improvements in mechanical properties of the EPDM/PA12 blend. With 25 kGy of e-beam irradiation and mEPDM, the EPDM/PA12 blends successfully exhibit TPE behaviors with reasonable elastomeric and mechanical properties.

Thermal Properties of the Themoplastic Elastomers Based on EPDM Ionomer/Polyamide-6 Blends (EPDM 이오노머/Polyamide-6 블렌드계 열가소성 탄성체의 열적 성질)

  • Jin, Sung-Hoon;Song, Gwang Seok;Lee, Dai-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.167-172
    • /
    • 2012
  • A new type of thermoplastic elastomer (TPE) based on EPDM ionomer as an elastomer and polyamide-6 as a reinforcing crystalline polymer was prepared and the thermal properties of TPEs were investigated. Especially effects of neutralization of maleated EPDM (MA-EPDM) to prepare EPDM ionomer with zinc oxide and the content of polyamide-6 on the thermal properties of the blends were investigated. Both the neutralization and blending were carried out employing a twin screw extruder. It was found that the neutralization of MA-EPDM results in the increase of cooling crystallization temperatures. Polyamide-6 plays the role of reinforcing filler in the blends due to the high crystallinity. Fine dispesion of polyamide-6 in the blends was confirmed and attributed to the imide formation between the maleic anhydride of MA-EPDM and amine group of polyamide-6. TPEs based on EPDM ionomer/Polyamide-6 blends showed balanced mechanical properties with improvement in heat resistance.

Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite (실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성)

  • Lee, Byoung-Chul;Kang, Doo-Whan
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • Maleic anhydride (MA) modified ethylene-propylene-diene terpolymer (MEPDM) was pre-pared from solution polymerization. MEPDM-g-PST copolymer was prepared by melt polymerization of male ate d EPDM and quaternary ammonium silyl polydimethylsiloxane -7,7,8,8- tetracyanoquinodimethane (TCNQ) adduct (PST) in internal mixer and MEPDM-g-PST/HDPE/CB (MPEC) was prepared by com-pounding HDPE, MEPDM-g-PST copolymer and carbon black (CB, 5, 10, 15, and 20 phr), and HDPE/ CB (PEC) by compounding HDPE and CB (5, 10, 15, and 20 phr), respectively. The structure of MEPDM-g-PST copolymer was confirmed by measuring the FTIR. The maximum grafting ratio of MA onto EPDM was 2.35%. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix show that CB in MPEC was better dispersed than that in PEC composite.