DOI QR코드

DOI QR Code

Tunable Interlayer Exchange Coupling Energy

조절 가능한 층간교환상호작용에 관한 연구

  • Published : 2006.04.01

Abstract

We theoretically demonstrate that the interlayer exchange coupling (IEC) energy can be manipulated by means of an external bias voltage in a $F_1/NM/F_2/S$$(F_1:ferromagnetic,\;NM:nonmagnetic\;metallic,\;F_2:ferromagnetic,\;S:semiconductor\;layers)$ four-layer system. It is well known that the IEC energy between two ferromagnetic layers separated by nanometer thick nonmagnetic layer depends on the spin-dependence of reflectivity to the $F_1/NM/F_2/S$ four-layer system, where the reflectivities at the interface in $NM/F_2$ interface also depends on $F_2/S$ interface due to the multiple reflection of an electron-like optics. Finally, the IEC energy depends on the spin-dependent electron reflectivity not only at the interfaces of $F_1/NM/F_2$, but also at the interface of $F_2/S$. Naturally the Schottky barrier is formed at the interface between metallic ferromagnetic layer and semiconductor, the Schottky barrier height and thickness can be tailored by an external bias voltage, which causes the change of the spin-dependent reflectivity at $F_2/S$ interface. We show that the IEC energy between two ferromagnetic layers can be controlled by an external bias voltage due ti the electron-optics nature using a simple free-electron-like one-dimensional model.

강자성체/비자성 금속/강자성체/반도체 구조에서 층간교환강호작용(interlayer exchange coupling) 에너지가 외부 인가전압으로 제어 가능함을 이론적으로 보였다. 비자성 금속층으로 격리된 두 강자성층 사이의 층간교환상호작용 에너지는 강자성체/비자성 금속 계면에서 전자의 스핀에 의존하는 반사율의 차이에 의해 결정된다는 것은 잘 알려진 사실인데, 이를 각자성체/비자성 금속/강자성체/반도체 구조에 적용하여 층간교환상호작용 에너지가 강자성체/비자성 금속/강자성체 계면에서 전자의 반사율뿐 아니라 강자성체/반도체 계면에서의 반사율에도 의존한다는 것을 보였다 강자성체/반도체 계면에 생기는 Schottky 장벽의 높이와 두께는 인가전압으로 바꿀 수 있고, 그에 따른 전자의 반사율이 인가전압에 의해 바뀔 수 있음을 알 수 있었다. 결과적으로 일차원 자유전자 모델을 사용하여 외부 인가 전압으로써 두 강자성체 사이의 층간 교환 상호작용 에너지를 제어할 수 있다는 것을 확인하였다.

Keywords

References

  1. S. A. Wolf, et al. Science, 294, 1488(2001) https://doi.org/10.1126/science.1065389
  2. J. F. Gregg, I. Petej, E. Jouguelet, J. Phys. D. Appl. Phys. 35, R121(2002) https://doi.org/10.1088/0022-3727/35/18/201
  3. S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, Proc. of the IEEE, 91, 703(2003)
  4. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867(1999) https://doi.org/10.1126/science.285.5429.867
  5. M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281(1998) https://doi.org/10.1103/PhysRevLett.80.4281
  6. J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999) https://doi.org/10.1016/S0304-8853(99)00289-9
  7. J. A. Katine, F. J. Albert, and R. A. Buhrman, Appl. Phys. Lett. 76, 354(1999) https://doi.org/10.1063/1.125752
  8. C.-Y. You and S. D. Bader, J. Magn. Magn. Mater. 195, 488(1999) https://doi.org/10.1016/S0304-8853(99)00233-4
  9. N. F. Schwabe, R. J. Elliott, and N. S. Wingreen, Phys. Rev. B 54, 12953(1996) https://doi.org/10.1103/PhysRevB.54.12953
  10. L. Y. Gorelik et al. Phys. Rev. Lett. 91, 088301(2003) https://doi.org/10.1103/PhysRevLett.91.088301
  11. P. Bruno, Phys. Rev. B. 52, 411(1995) https://doi.org/10.1103/PhysRevB.52.411
  12. P. Bruno, J. Magn. Magn. Mater. 164, 27(1996) https://doi.org/10.1016/S0304-8853(96)00366-6
  13. P. J. H. Bloemen et al. Phys. Rev. Lett. 72, 764(1994) https://doi.org/10.1103/PhysRevLett.72.764
  14. S. N. Okuno and K. Inomata, Phys. Rev. Lett. 72, 1553(1994) https://doi.org/10.1103/PhysRevLett.72.1553
  15. S. N. Okuno and K. Inomata, J. of Phys. Soc. of Japan. 64, 3631(1995) https://doi.org/10.1143/JPSJ.64.3631
  16. J. J. de Vries et al. Phys. Rev. Lett. 75, 4306(1995) https://doi.org/10.1103/PhysRevLett.75.4306
  17. J. Kudrnovsky, V. Drchal, P. Bruno, I. Turek, and P. Weinberger, Phys. Rev. B. 56, 8919(1997) https://doi.org/10.1103/PhysRevB.56.8919
  18. J. Kudrnovsky, V. Drchal, P. Bruno, I. Turek, and P. Weinberger, Comp. Mater. Sci. 10, 188(1998) https://doi.org/10.1016/S0927-0256(97)00097-9
  19. M. Zwierzycki and S. Krompiewski, Phys. Rev. B. 57, 5036(1998) https://doi.org/10.1103/PhysRevB.57.5036
  20. K. Bessho and Y. Iwasaki, US Patent 6,480,412 (2002)
  21. Japan Patent P2001-19661A (2001)
  22. S. M. Sze, 'Physics of semiconductor devices,' John Wiley & Sons, (1981)
  23. J. W. Conley, C. B. Duke, G. D. Mahan, and J. J. Tiemann, Phys. Rev. 150, 466 (1966) https://doi.org/10.1103/PhysRev.150.466
  24. M. S. de Bianchi and M. Di Ventra, Eur. J. Phys. 16, 260(1995) https://doi.org/10.1088/0143-0807/16/6/003
  25. M. Di Ventra and C. J. Fall, Comp. in Phys. 12, 248(1998) https://doi.org/10.1063/1.168679
  26. C.-Y. You, C. H. Sowers, A. Inomata, J. S. Jiang, S. D. Bader and D. D. Koelling, J. Appl. Phys. 85, 5889(1999) https://doi.org/10.1063/1.369904
  27. M. D. Stiles, Phys. Rev. B. 54, 14679 (1996) https://doi.org/10.1103/PhysRevB.54.14679
  28. M. D. Stiles, J. Magn. Magn. Mater. 200, 322(1999) https://doi.org/10.1016/S0304-8853(99)00334-0
  29. D. A. Papaconstantopoulos, 'Handbook of the band structure of elemental solids', Plenum Press (1986)
  30. Y. B. Xu, E. T. M. Kernohan, D. J. Freeland, A. Ercole, M. Tselepi, and J. T. C. Bland, Phys. Rev. B. 58, 890 (1998) https://doi.org/10.1103/PhysRevB.58.890