DOI QR코드

DOI QR Code

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam

원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상

  • Published : 2006.02.01

Abstract

Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Keywords

References

  1. Haight, E. C. and King, W. W., 1972, 'Stability of Non-Linear Oscillations of an Elastic Rod,' J. Acoustic. Soc. Am. Vol. 52, pp. 899-911 https://doi.org/10.1121/1.1913195
  2. Ho, C. H., Scott, R. A. and Eisley, J. G., 1975, 'Non-Planar, Non-Linear Oscillations of a Beam-I. Forced Motions,' Int. J. Non-linear Mech.10, pp. 113-127 https://doi.org/10.1016/0020-7462(75)90018-9
  3. Moody, M. L., 1967, 'The Parametric Response of Imperfect Columns, in Developments in Mechanics,' Proc. Tenth Midwestern Mechanics Conference, Vol. 4, pp. 329-346
  4. Crespo da Silva, M. R. M. and Glynn, C. C., 1978, 'Nonlinear Flexural-Flexural-Tensional Dynamics of Inextensional Beams-II. Forced Motions,' J. Struct. Mech. Vol. 6, pp. 449-461 https://doi.org/10.1080/03601217808907349
  5. Crespo da Silva, M. R. M. and Glynn, C. C., 1979, 'Non-Linear Non-Planar Resonant Oscillations in Fixed-Free Beams with Support Asymmetry,' Int. J. Solids. Struct. Vol. 15, pp. 209-219 https://doi.org/10.1016/0020-7683(79)90032-5
  6. Pai, Perngjin F. and Nayfeh, Ali H., 1990, 'Non-Linear Non-Planar Oscillations of a Cantilever beam under Lateral Base Excitations,' Int. J. Non-Linear Mechanics, Vol. 25, No.5, pp. 455-474 https://doi.org/10.1016/0020-7462(90)90012-X
  7. Crespo da silva, M. R. M. and Glynn, C. C., 1978, 'Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams-I. Equations of Motion,' J. Struct. Mech. Vol. 6, pp. 437-448 https://doi.org/10.1080/03601217808907348
  8. Nayfeh, A. H., 1973, 'Nonlinear Transverse Vibrations of Beams with Properties that Vary Along the Length,' J. Acoust. Soc .Am. Vol. 53, pp. 766-770 https://doi.org/10.1121/1.1913389
  9. Tezak, E. G, Mook, D. T. and Sridhar, S., 1978, 'Nonlinear Analysis of the Lateral Response of Columns to Periodic Loads,' J. Mech. Des. Vol.100, pp.651-659 https://doi.org/10.1115/1.3453986
  10. Choi, Y. S., Seo, K. S. and Woo, Y. J., 2003, 'Nonlinear Vibration of a Cantilever Beam Subjected to Electromagnetic Forces,' KSME A, Vol. 27, No.1, pp.48-57 https://doi.org/10.3795/KSME-A.2003.27.1.048
  11. Dowell, E. H., Traybar, J. and Hodges, D. H., 1977, 'An Experimental-Theoretical Correlation Study of Nonlinear Bending and Torsion Deformations of a Cantilever Beam,' J Sound Vib. Vol. 50, pp. 533-544 https://doi.org/10.1016/0022-460X(77)90501-6
  12. Rosen, A. and Friedmann, P., 1979, 'The Nonlinear Behavior of Elastic Slender Straight Beams Undergoing Small Strains and Moderate Rotations,' J. appl. Mech. Vol. 46, pp. 161-168 https://doi.org/10.1115/1.3424490
  13. Crespo da silva, M. R. M. and Glynn, C. C., 1978, 'Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams-I, Equations of Motion,' J. Struct. Mech. 6, pp. 437-448 https://doi.org/10.1080/03601217808907348
  14. Evan-Iwanowski, R. M., Sanford, W. F. and Kehagioglou, T., 1970, 'Nonstationary Parametric Response of a Nonlinear Column,' Dev. theor. appl. Mech. 5, pp. 715-743
  15. Crespo da Silva, M. R. M. and Hodges, D. H., 1986, 'Nonlinear Flexure and Torsion of Rotating Beams, with Application to Helicopter Rotor Blades-Il, Response and Stability Results,' Vertica 10, pp. 171-186
  16. NAYFEH, ALI H., 2000, 'NONLINEAR INTERACTIONS Analytical, Computational and Experimental Methods,' JOHN WILEY & SONS, INC., pp. 181-304
  17. Kim, M. G, Lee, H. S. and Cho, C. D., 2005, 'Non-linear Phenomenon in the Response of Circle Cantilever Beam,' KSNVE, Vol. 15, No.4, pp. 445-451 https://doi.org/10.5050/KSNVN.2005.15.4.445
  18. Kim, M. G., 1995, 'The Experiment for Chaos of Cantilever Beam,' Proceedings of the KSME Fall Annual Meeting (I), pp. 504-510
  19. Lim Jae-Hoon, Jung Goo-Choong and Choi Yeon-Sun, 2003, 'Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification,' KSME International Journal, Vol. 17, No. 12, pp.1994-2003