DOI QR코드

DOI QR Code

Comparative Studies of Topology Optimization Using Continuous Approximation of Material Distribution

재료분포의 연속적인 근사를 이용한 위상최적설계 방법의 비교 연구

  • 임영석 (한양대학교 대학원 기계설계학과) ;
  • 유정훈 (연세대학교 기계공학부) ;
  • 사전현이랑 (동북대학 공학계연구과 토목공학) ;
  • 서협진이 (경도대학 공학연구과 기계공학과 항공우주공학) ;
  • 민승재 (한양대학교 기계공학부)
  • Published : 2006.02.01

Abstract

To prevent the numerical instabilities in topology optimization, continuous approximation of material distribution (CAMD) is proposed to the homogenization design method (HDM) and the simple isotropic material with penalization (SIMP) method. The continuous FE approximation of design variables including high order elements is applied to the formulation of SIMP method. Numerical examples are presented to compare the efficiency of CAMD both in HDM and SIMP.

Keywords

References

  1. Bendsoe, M. P. and Kikuchi, N. 1988, 'Generating Optimal Topologies in Structural Design Using a Homogenization Method,' Comput. Methods Appl. Mech. Engrg., Vol. 71, pp. 197-224 https://doi.org/10.1016/0045-7825(88)90086-2
  2. Bendsoe, M. P., 1989, 'Optimal Shape Design as a Material Distribution Problem,' Struct. Optim., Vol. 17, pp. 193-202 https://doi.org/10.1007/BF01650949
  3. Sigmund, O. and Petersson, J., 1998, 'Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Mesh-Dependencies and Local Minima,' Struc. Optim., Vol. 16, pp. 68-75 https://doi.org/10.1007/BF01214002
  4. Diaz, A. R. and Sigmund, O., 1995, 'Checkerboard Patterns in Layout Optimization,' Struc. Optim., Vol. 10, pp. 40-45 https://doi.org/10.1007/BF01743693
  5. Bendsoe, M. P., Kikuchi, N. and Diaz, A.R., 1993, 'Topology and Generalized Layout Optimization of Elastic Structures,' In Topology Design of Structures (Edited by Bendsoe, M. P. and Mota Soares, C. A.), Kluwer, Dordrecht, pp. 159-205
  6. Sigmund, O., 1994, 'Design of Material Structures Using Topology Optimization,' Ph.D. thesis, Department of Solid Mechanics, Technical University of Denmark
  7. Bourdin, B., 2001, 'Filters in Topology Optimization,' Int. J. Numer. Meth. Engng., Vol. 50, pp.2143-2158 https://doi.org/10.1002/nme.116
  8. Haber, R. B., Bendsoe, M. P. and Jog, C., 1996, 'A New Approach to Variable-Topology Shape Design Using a Constraint on the Perimeter,' Struc. Optim., Vol. 11, pp. 1-12 https://doi.org/10.1007/BF01279647
  9. Park, S. H. and Youn, S. K., 1997, 'A Study on the Topology Optimization of Structures,' Transactions of the KSME, A, Vol. 21, No.8, pp. 1241-1249
  10. Petersson, J. and Sigmund, O., 1998, 'Slope Constrained Topology Optimization,' Int. J. Numer. Meth. Engng., Vol. 41, pp. 1417-1434 https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N
  11. Matsui, K. and Terada, K. 2004, 'Continuous Approximation of Material Distribution for Topology Optimization,' Int. J. Numer. Meth. Engng., Vol. 59, pp. 1925-1944 https://doi.org/10.1002/nme.945
  12. Yoon, G. H. and Kim, Y. Y., 2005, 'Element Connectivity Parameterization for Topology Optimization of Geometrically Nonlinear Structures,' International Journal of Solids and Structures, Vol. 42, No.7, pp. 1983-2009 https://doi.org/10.1016/j.ijsolstr.2004.09.005
  13. Joung, Y. S., Yoon, G. H. and Kim, Y. Y., 2005, 'Topology Optimization Using the Element Connectivity Parameterization Method in Three Dimensional Design Domain,' Transactions of the KSME A, Vol. 29, No.7, pp. 990-995 https://doi.org/10.3795/KSME-A.2005.29.7.990
  14. Sigmund, O., 2001, 'A 99 Line Topology Optimization Code Written in Matlab,' Struc. Multidisc Optim., Vol. 21, pp. 120-127 https://doi.org/10.1007/s001580050176

Cited by

  1. Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System vol.19, pp.3, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.3.194