DOI QR코드

DOI QR Code

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis

단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향

  • 홍승현 (성균관대학교 기계공학부) ;
  • 정세훈 (성균관대학교 기계공학부) ;
  • 김영진 (성균관대학교 기계공학부) ;
  • 최재봉 (성균관대학교 기계공학부) ;
  • 백승현 (성균관대학교 기계공학부)
  • Published : 2006.02.01

Abstract

Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

Keywords

References

  1. McEuen, P., 2000, 'Single-Wall Carbon Nanotubes,' Phys. World, Vol. 13(6), pp. 31-36
  2. Avouris, Ph., 2002, 'Molecular Electronics with Carbon Nanotubes,' Acc. Chem. Res., Vol. 35, pp. 1026-1034 https://doi.org/10.1021/ar010152e
  3. Yao, Z., Kane, C. L. and Dekker, C., 2000, 'High-Field Electrical Transport in Single-Wall Carbon Nanotubes,' Phys. Rev. Lett., Vol. 84, pp. 2941-2944 https://doi.org/10.1103/PhysRevLett.84.2941
  4. Tans, S. J., Verschueren, A. R. M. and Dekker, C., 1998, 'Room-Temperature Transistor Based on Single Carbon Nanotubes,' Nature, Vol. 393, pp. 49-52 https://doi.org/10.1038/29954
  5. Strano, M. S., Dyke, C. A, Usrey, M. L., Barone, P. W., Allen, M. J., Shan, H., Kittrell, C., Hauge R. H., Tour, J. M. and Smalley, R. E., 2003, 'Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization,' Science, Vol. 301, pp. 1519-1522 https://doi.org/10.1126/science.1087691
  6. Baik, S., Usrey, M., Rotkina, L. and Strano, M. S., 2004, 'Using the Selective Functionalization of Metallic Single-Walled Carbon Nanotubes to Control Dielectrophoretic Mobility,' J. Phys. Chem. B, Vol. 108, pp. 15560-15564 https://doi.org/10.1021/jp048066u
  7. Krupke, R., Hennrich, F., Kappes, M. and Lohneysen, H., 2004, 'Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes,' Nano Lett., Vol. 4(8), pp. 1395-1399 https://doi.org/10.1021/nl0493794
  8. Krupke, R., Hennrich, F., Lohneysen H. and Kappes M., 2003, 'Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes,' Science, Vol. 301, pp. 344-347 https://doi.org/10.1126/science.1086534
  9. Dresselhaus, M. S., Dresselhaus, G. and Avouris, Ph., 2001, 'Carbon Nanotubes: Synthesis, Structure, Properties and Applications,' Springer-Verlag: New York
  10. Lee, S. W., Lee, D. S., Yu, H. Y., Campbell, E. E. B. and Park, Y. W., 2004, 'Production of Individual Suspended Single-Walled Carbon Nanotubes Using the AC Electrophoresis Technique,' Appl. Phys. A, Vol. 78, pp. 283-286 https://doi.org/10.1007/s00339-003-2363-6
  11. Nagahara, L., Amlani, I., Lewenstein, J. and Tsui, R., 2002, 'Directed Placement of Suspended Carbon Nanotubes for Nanometer-Scale Assembly,' Appl. Phys. Lett., Vol. 80, pp. 3826-3828 https://doi.org/10.1063/1.1481237
  12. O'Connell, M. J., Bachilo, S., Huffman, C., Moore, V. C., Strano, M., Haroz, E., Rialon, K., Boul, B., Noon, W., Kitrell, C., Ma, J., Hauge, R. H. Weisman, R. and Smalley, R. E., 2002, 'Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,' Science, Vol. 297, pp. 593-596 https://doi.org/10.1126/science.1072631
  13. Moore, V. C., Strano, M. S., Haroz, Erik H., Hauge, R. H. and Smalley, R. E., 2003, 'Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,' Nano Lett., Vol. 3(10), pp. 13 79-1382 https://doi.org/10.1021/nl034524j
  14. Morgan, H., Green, N. G., 2003, AC Electrokinetics: Colloides and Nanoparticles, Research Studies Press Ltd., Baldock, Hertfordshire, England
  15. Jones, T. B., 1995, Electromechanisms of Particles, Cambridge University Press: Cambridge
  16. Benedict, L. X., Louie, S. G. and Cohen, M. L., 1995, 'Static Polarizability of Single-Wall Carbon Nanotubes,' Phys. Rev. B, Vol. 52, pp. 8541-8549 https://doi.org/10.1103/PhysRevB.52.8541
  17. Pichler, T., Knupfer, M., Golden, M. S. and Fink J., 1998, 'Localized and Delocalized Electronic States in Single-Wall Carbon Nanotubes,' Phys. Rev. Lett., Vol. 80, pp. 4729-4732 https://doi.org/10.1103/PhysRevLett.80.4729
  18. O'Lonski, C. T., 1960, 'Electronic Properties of Macromolecules. v. Theory of Ionic Polarization in Polyelectrolytes,' J. Phys. Chem., Vol. 64, pp. 605-619 https://doi.org/10.1021/j100834a023
  19. Wang, C. and Lucy, C., 2004, 'Mixed Cationic/ Anionic Surfactants for Semipermanent Wall Coatings in Capillary Electrophoresis,' Electrophoresis, Vol. 25, pp. 825-832 https://doi.org/10.1002/elps.200305760
  20. Tamasic, V., Stefanic, I. and Filipovic -Vincekovic, N., 1999, 'Adsorption, Association and Precipitation in Hexadecyltrimethylammonium Bromide/ Sodium Dodecyl Sulfate Mixtures, Colloid Polym. Sci., Vol. 277, pp. 153-163 https://doi.org/10.1007/s003960050380
  21. Tondre, C. and Caillet, C., 2001, 'Properties of the Amphiphilic Films in Mixed Cationic/Anionic Vesicles: a Comprehensive View from a Literature Analysis,' Adv. Colloid Interface Sci., Vol. 93, pp. 115-134 https://doi.org/10.1016/S0001-8686(00)00081-6
  22. Marques, E. F., Regev, O., Khan, A. and Lindman, B., 2003, 'Self-Organization of Double-Chained and Pseudo Double-Chained Surfactants: Counterion and Geometry Effects,' Adv. Colloid Interface Sci., Vol. 100, pp. 83-104 https://doi.org/10.1016/S0001-8686(02)00068-4
  23. Heller, D., Barone, P. W., Swanson, J. P., Mayrhofer, R. M. and Strano, M. S., 2004, 'Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes,' J. Phys. Chem. B, Vol. 108, pp. 6905-6909 https://doi.org/10.1021/jp037690o
  24. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. S. and Saito, R., 2002, 'Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes,' Carbon, Vol. 40, pp. 2043-2061 https://doi.org/10.1016/S0008-6223(02)00066-0