A Role of Standard Material in Rare Earth Element Analysis by ICP-MS

ICP-MS를 이용한 희토류원소 분석시 표준시료의 선택이 미치는 영향

  • Lee Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song Yong Sun (Department of Environmental Geosciences, Pukyong National University) ;
  • Kim Yongje (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 지하수지열연구부) ;
  • 김건한 (한국지질자원연구원 지질환경재해연구부) ;
  • 송용선 (부경대학교 환경지질과학과) ;
  • 김용제 (한국지질자원연구원 지하수지열연구부)
  • Published : 2005.12.01

Abstract

In order to clarify the effect of standard rock material in the chemical analysis of rare earth element abundance with ICP-MS, we measured rare earth element abundance of KIGAM granite standard rock material (KG-1), USGS granite standard rock material (G-2), GSJ granite standard rock materials (JG-1a and JG-2). In REE analysis, we used conventional calibration standard solutions, KG-1, JG-1a, JG-2 and G-2 as standard material, respectively. Chondrite-normalized LREE patterns of low granite standard material correspond well each other in the recommended value and the estimated value regardless of a kind of standard rock. However, the HREE patterns of the estimated value based on G-2 or JG-2 and the recommended value are different from each other. Such difference may be due to the wrong recommended value or a specific geochemical properly of the standard rock material itself, The chondrite-normalized REE patterns of four standard rock materials estimated on the basis of KG-1 or JG-1 a show little deviation compared to the those of the recommended values. This suggests that KG-1 and JG-1a may be a optimum standard material for granitoids.

ICP-MS로 화강암질 암석내 희토류원소의 함량 분석시 표준시료의 선택이 어느 정도 영향을 주는 지를 밝혀내기 위해, 상업용 표준시료(ACCU-standard, No. Cal-1), 화강암의 한국산 표준시료(KG-1), 미국산 표준시료(G-2), 일본산 표준시료(JC-1a, JC-2)를 각각 기준시료로 하여 각각의 희토류원소 함량을 측정하였다. 실험결과에 의하면, 경희토류(La-Gd) 분포도는 표준시료의 변화에 관계없이 대체적으로 추천값과 측정값 모두 일치하였다. 그러나 G-2 혹은 JG-2를 기준으로 측정했을 시, 다른 표준시료의 추천값과 측정값에 의한 중희토류(Gd-Lu)의 분포도는 많은 차이가 발생되었다. 이는 표준시료의 추천값의 오류 혹은 표준시료 암석의 지구화학적 특성에 기인된다. KG-1 혹은 JG-1a를 기준시료로 하여 희토류원소 함량을 측정했을 경우에는 G-2나 JG-2를 기준시료로 했을 때보다 추천값과 측정값에 의한 희토류원소의 분포도의 어긋남이 비교적 약한 편이다. 이는 국내 화강암류의 희토류원소 함량분석에 있어서의 표준시료로서 KG-1 혹은 JG-1a가 보다 더 유용함을 지시해준다.

Keywords

References

  1. 김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법에 (ICP-MS)에 의한 암석표준물질 중의 Lanthanids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8, 43-53
  2. Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systemsevidence fromY/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323-333 https://doi.org/10.1007/s004100050159
  3. Coryell, C. G., Chase, J. W. and Winchester, J. W., 1963, A procedure for geochemical interpretation of terrestrial rare-earth abundances patterns. Jour. Geophys. Res., 68, 559-566 https://doi.org/10.1029/JZ068i002p00559
  4. Dia, A., Gruau, G., Olivie-Lauquet G., Riou, C., Molenat J. and Curmi, P., 2000, The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 4131-4151 https://doi.org/10.1016/S0016-7037(00)00494-4
  5. Govindaraju, K., 1994, 1994 compilation of working values and description for 383 geostandards. Geostand. News., 18, 1-158 https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1
  6. Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995, 1994 compilation values for GSJ reference samples, 'Igneous rock series'. Geochem. J., 29, 91-95 https://doi.org/10.2343/geochemj.29.91
  7. Irber, W., 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 63, 489-508 https://doi.org/10.1016/S0016-7037(99)00027-7
  8. Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198 https://doi.org/10.1016/S0024-4937(01)00066-4
  9. Janssen, R.P.T. and Verweij, W., 2003, Geochemistry of some rare earth elements in groundwaters, Verlingsbeek, The Netherlands, Water Res., 37, 1320-1350 https://doi.org/10.1016/S0043-1354(02)00492-X
  10. Johannesson, K.H. and Lyons, W.B., 1994, The rare earth element geochemistry of Monor Lake water and the importance of carbonate complexing. Limm. Ocean., 39, 1141-1154 https://doi.org/10.4319/lo.1994.39.5.1141
  11. Johannesson, K.H. and Lyons, W.B., 1995, Rare-earth element geochemistry of Color Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chem. Geol., 119, 209-223 https://doi.org/10.1016/0009-2541(94)00099-T
  12. Johannesson, K.H. and Hendry, M.J., 2000, Rare-earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 64, 1493-1509 https://doi.org/10.1016/S0016-7037(99)00402-0
  13. Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J., and Bryne, R.H., 1995, The solubility control of rare earth elements in natural terrestrial waters and the significance of $PO_{4}^{3-}$ and $CO_{3}^{2-}$ 2- in limiting dissolved rare earth element concentrations: A review of recent information. Aqua. Geochem., 1, 157-173 https://doi.org/10.1007/BF00702889
  14. Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319 https://doi.org/10.1016/0012-821X(96)00016-7
  15. Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997, Rare Earth Elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618, 1997 https://doi.org/10.1016/S0016-7037(97)00177-4
  16. Johannesson, K.H., Zhou, X., Guo, C., Stetzenbach, K.J., Hodge, V.F., 2000, Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chem. Geol., 164, 239-257 https://doi.org/10.1016/S0009-2541(99)00152-7
  17. Kawabe, I., 1992, Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory. Geochem. J., 26, 309-335 https://doi.org/10.2343/geochemj.26.309
  18. Kawabe, I., Toriumi, T., Ohta, A., Miura, N., 1998, Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect. Geochem. J. 32: 213-229 https://doi.org/10.2343/geochemj.32.213
  19. Kim, K.H., Lee, S.G., Yang, M.K. and Chun, S.K., 2005, Preparation of Korean granite reference material (KG1): Its homogeneity, major and rare earth element composition. Geochim. Cosmochim. Acta 69, No. 10s, A795
  20. Lee, S. G., Masuda, A. and Kim, H. S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67 https://doi.org/10.1016/0009-2541(94)90041-8
  21. Lee, S. G., Masuda, A., Shimizu, H. and Song, Y. S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneiss. Geochem. J., 35, 175-187 https://doi.org/10.2343/geochemj.35.175
  22. Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y. and Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem., 18, 135-143 https://doi.org/10.1016/S0883-2927(02)00071-9
  23. Lee, S. G., Shin, S. C., Jin, M. S., Ogasawara, M. and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precam. Res., 139, 101- 120 https://doi.org/10.1016/j.precamres.2005.06.006
  24. Liang, Q. Jiang, H. and Gregorie, D.C., 2000, Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51, 507-513 https://doi.org/10.1016/S0039-9140(99)00318-5
  25. Lipin, B.R. and McKay, G.A. (ed.), 1989, Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, 348 p
  26. Masuda, A., 1962, Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. J. Earth Sci. Nagoya Univ., 10, 173-187
  27. Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. Jour., 9, 183-184 https://doi.org/10.2343/geochemj.9.183
  28. Masuda, A. and Ikeuchi, Y., 1979, Lanthanide tetrad effect observed in marine environment. Geochem. J., 13, 19-22 https://doi.org/10.2343/geochemj.13.19
  29. Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248 https://doi.org/10.1016/0016-7037(73)90131-2
  30. Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124 https://doi.org/10.2343/geochemj.21.119
  31. Masuda, A., Shimoda, J., Matsuda, N., Lee, S.-G. and Shabani, M. B., 1995, Quadruple Parabolic Aberration Curves Independently derived from Lanthanides in Samples of Leuco-granitic Gneiss and Seawater. Proc. Japan Acad., 71(B), 283-287
  32. McLennan, S. M., 1994, Rare earth element geochemistry and the 'tetrad' effect. Geochim. Cosmochim. Acta, 58, 2025-2033 https://doi.org/10.1016/0016-7037(94)90282-8
  33. Meisel, T., Schoner, N., Paliulionyte, V. and Kahr, E., 2001, Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb, Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductive Coupled Plasma-Mass Spectrometry. Geostd. News. 26, 53-61
  34. Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D., 2002, Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 66, 1185-1196 https://doi.org/10.1016/S0016-7037(01)00849-3
  35. Robinson P., Higgins, N.C. and Jenner, G. A., 1986, Determination of rare-earth elements, yttrium and scandium in rocks by an ion exchange-X-Ray fluorescence technique. Chem. Geol. 55, 121-137 https://doi.org/10.1016/0009-2541(86)90132-4
  36. Sen Gupta, J.G. and Bertrand, N. B., 1995, Direct ICP-MS determination of trace and ultratrace elements in geological material after decomposition in a microwave oven I. Quantitation of Y, th, U and the lanthanides. Talanta, 42, 1595-1607 https://doi.org/10.1016/0039-9140(95)01612-0
  37. Shabani, M.B., and Masuda, A., 1991, Sample Introduction by On-Line Two-Stage Solvent Extraction and Back- Extraction to Eliminate Matrix Interference and to Enhance Sensitivity in the Determination of Rare-Earth Elements with Inductively Coupled Plasma Mass Spectro. Anal. Chem., 63, 2099-2105 https://doi.org/10.1021/ac00019a007
  38. Tang, J. and Johannesson, K.H., 2003, Speciation of rare earth elements in natural terrestrial waters; assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta, 67, 2321-2339 https://doi.org/10.1016/S0016-7037(02)01413-8
  39. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312 p
  40. Totland, M., Jarvis, I. and Jarvis, K. E., 1992, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chem. Geol., 95, 35-62 https://doi.org/10.1016/0009-2541(92)90042-4