Browse > Article

A Role of Standard Material in Rare Earth Element Analysis by ICP-MS  

Lee Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Kim Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources)
Song Yong Sun (Department of Environmental Geosciences, Pukyong National University)
Kim Yongje (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.14, no.4, 2005 , pp. 237-250 More about this Journal
Abstract
In order to clarify the effect of standard rock material in the chemical analysis of rare earth element abundance with ICP-MS, we measured rare earth element abundance of KIGAM granite standard rock material (KG-1), USGS granite standard rock material (G-2), GSJ granite standard rock materials (JG-1a and JG-2). In REE analysis, we used conventional calibration standard solutions, KG-1, JG-1a, JG-2 and G-2 as standard material, respectively. Chondrite-normalized LREE patterns of low granite standard material correspond well each other in the recommended value and the estimated value regardless of a kind of standard rock. However, the HREE patterns of the estimated value based on G-2 or JG-2 and the recommended value are different from each other. Such difference may be due to the wrong recommended value or a specific geochemical properly of the standard rock material itself, The chondrite-normalized REE patterns of four standard rock materials estimated on the basis of KG-1 or JG-1 a show little deviation compared to the those of the recommended values. This suggests that KG-1 and JG-1a may be a optimum standard material for granitoids.
Keywords
Rare earth element; Granite standard materials; KG-1; G-2; JG-1a; JG-2; Recommended value; ICP-MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법에 (ICP-MS)에 의한 암석표준물질 중의 Lanthanids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8, 43-53
2 Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198   DOI   ScienceOn
3 Johannesson, K.H., Zhou, X., Guo, C., Stetzenbach, K.J., Hodge, V.F., 2000, Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chem. Geol., 164, 239-257   DOI   ScienceOn
4 Kawabe, I., Toriumi, T., Ohta, A., Miura, N., 1998, Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect. Geochem. J. 32: 213-229   DOI   ScienceOn
5 Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y. and Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem., 18, 135-143   DOI   ScienceOn
6 Lipin, B.R. and McKay, G.A. (ed.), 1989, Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, 348 p
7 Masuda, A., 1962, Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. J. Earth Sci. Nagoya Univ., 10, 173-187
8 Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248   DOI   ScienceOn
9 Masuda, A., Shimoda, J., Matsuda, N., Lee, S.-G. and Shabani, M. B., 1995, Quadruple Parabolic Aberration Curves Independently derived from Lanthanides in Samples of Leuco-granitic Gneiss and Seawater. Proc. Japan Acad., 71(B), 283-287
10 Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D., 2002, Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 66, 1185-1196   DOI   ScienceOn
11 Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997, Rare Earth Elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618, 1997   DOI   ScienceOn
12 Lee, S. G., Masuda, A., Shimizu, H. and Song, Y. S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneiss. Geochem. J., 35, 175-187   DOI   ScienceOn
13 Kim, K.H., Lee, S.G., Yang, M.K. and Chun, S.K., 2005, Preparation of Korean granite reference material (KG1): Its homogeneity, major and rare earth element composition. Geochim. Cosmochim. Acta 69, No. 10s, A795
14 Meisel, T., Schoner, N., Paliulionyte, V. and Kahr, E., 2001, Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb, Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductive Coupled Plasma-Mass Spectrometry. Geostd. News. 26, 53-61
15 Dia, A., Gruau, G., Olivie-Lauquet G., Riou, C., Molenat J. and Curmi, P., 2000, The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 4131-4151   DOI   ScienceOn
16 Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J., and Bryne, R.H., 1995, The solubility control of rare earth elements in natural terrestrial waters and the significance of $PO_{4}^{3-}$ and $CO_{3}^{2-}$ 2- in limiting dissolved rare earth element concentrations: A review of recent information. Aqua. Geochem., 1, 157-173   DOI
17 Masuda, A. and Ikeuchi, Y., 1979, Lanthanide tetrad effect observed in marine environment. Geochem. J., 13, 19-22   DOI
18 Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995, 1994 compilation values for GSJ reference samples, 'Igneous rock series'. Geochem. J., 29, 91-95   DOI
19 Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systemsevidence fromY/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323-333   DOI   ScienceOn
20 Irber, W., 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 63, 489-508   DOI   ScienceOn
21 Kawabe, I., 1992, Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory. Geochem. J., 26, 309-335   DOI
22 Tang, J. and Johannesson, K.H., 2003, Speciation of rare earth elements in natural terrestrial waters; assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta, 67, 2321-2339   DOI   ScienceOn
23 Lee, S. G., Shin, S. C., Jin, M. S., Ogasawara, M. and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precam. Res., 139, 101- 120   DOI   ScienceOn
24 Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. Jour., 9, 183-184   DOI
25 Johannesson, K.H. and Hendry, M.J., 2000, Rare-earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 64, 1493-1509   DOI   ScienceOn
26 Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124   DOI
27 Johannesson, K.H. and Lyons, W.B., 1994, The rare earth element geochemistry of Monor Lake water and the importance of carbonate complexing. Limm. Ocean., 39, 1141-1154   DOI   ScienceOn
28 Govindaraju, K., 1994, 1994 compilation of working values and description for 383 geostandards. Geostand. News., 18, 1-158   DOI
29 Janssen, R.P.T. and Verweij, W., 2003, Geochemistry of some rare earth elements in groundwaters, Verlingsbeek, The Netherlands, Water Res., 37, 1320-1350   DOI   ScienceOn
30 Lee, S. G., Masuda, A. and Kim, H. S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67   DOI   ScienceOn
31 Sen Gupta, J.G. and Bertrand, N. B., 1995, Direct ICP-MS determination of trace and ultratrace elements in geological material after decomposition in a microwave oven I. Quantitation of Y, th, U and the lanthanides. Talanta, 42, 1595-1607   DOI   ScienceOn
32 Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319   DOI   ScienceOn
33 Liang, Q. Jiang, H. and Gregorie, D.C., 2000, Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51, 507-513   DOI   ScienceOn
34 Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312 p
35 McLennan, S. M., 1994, Rare earth element geochemistry and the 'tetrad' effect. Geochim. Cosmochim. Acta, 58, 2025-2033   DOI   ScienceOn
36 Coryell, C. G., Chase, J. W. and Winchester, J. W., 1963, A procedure for geochemical interpretation of terrestrial rare-earth abundances patterns. Jour. Geophys. Res., 68, 559-566   DOI
37 Robinson P., Higgins, N.C. and Jenner, G. A., 1986, Determination of rare-earth elements, yttrium and scandium in rocks by an ion exchange-X-Ray fluorescence technique. Chem. Geol. 55, 121-137   DOI   ScienceOn
38 Totland, M., Jarvis, I. and Jarvis, K. E., 1992, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chem. Geol., 95, 35-62   DOI   ScienceOn
39 Johannesson, K.H. and Lyons, W.B., 1995, Rare-earth element geochemistry of Color Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chem. Geol., 119, 209-223   DOI   ScienceOn
40 Shabani, M.B., and Masuda, A., 1991, Sample Introduction by On-Line Two-Stage Solvent Extraction and Back- Extraction to Eliminate Matrix Interference and to Enhance Sensitivity in the Determination of Rare-Earth Elements with Inductively Coupled Plasma Mass Spectro. Anal. Chem., 63, 2099-2105   DOI