1 |
김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법에 (ICP-MS)에 의한 암석표준물질 중의 Lanthanids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8, 43-53
|
2 |
Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198
DOI
ScienceOn
|
3 |
Johannesson, K.H., Zhou, X., Guo, C., Stetzenbach, K.J., Hodge, V.F., 2000, Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chem. Geol., 164, 239-257
DOI
ScienceOn
|
4 |
Kawabe, I., Toriumi, T., Ohta, A., Miura, N., 1998, Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect. Geochem. J. 32: 213-229
DOI
ScienceOn
|
5 |
Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y. and Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem., 18, 135-143
DOI
ScienceOn
|
6 |
Lipin, B.R. and McKay, G.A. (ed.), 1989, Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, 348 p
|
7 |
Masuda, A., 1962, Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. J. Earth Sci. Nagoya Univ., 10, 173-187
|
8 |
Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248
DOI
ScienceOn
|
9 |
Masuda, A., Shimoda, J., Matsuda, N., Lee, S.-G. and Shabani, M. B., 1995, Quadruple Parabolic Aberration Curves Independently derived from Lanthanides in Samples of Leuco-granitic Gneiss and Seawater. Proc. Japan Acad., 71(B), 283-287
|
10 |
Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D., 2002, Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 66, 1185-1196
DOI
ScienceOn
|
11 |
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997, Rare Earth Elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618, 1997
DOI
ScienceOn
|
12 |
Lee, S. G., Masuda, A., Shimizu, H. and Song, Y. S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneiss. Geochem. J., 35, 175-187
DOI
ScienceOn
|
13 |
Kim, K.H., Lee, S.G., Yang, M.K. and Chun, S.K., 2005, Preparation of Korean granite reference material (KG1): Its homogeneity, major and rare earth element composition. Geochim. Cosmochim. Acta 69, No. 10s, A795
|
14 |
Meisel, T., Schoner, N., Paliulionyte, V. and Kahr, E., 2001, Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb, Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductive Coupled Plasma-Mass Spectrometry. Geostd. News. 26, 53-61
|
15 |
Dia, A., Gruau, G., Olivie-Lauquet G., Riou, C., Molenat J. and Curmi, P., 2000, The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 4131-4151
DOI
ScienceOn
|
16 |
Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J., and Bryne, R.H., 1995, The solubility control of rare earth elements in natural terrestrial waters and the significance of and 2- in limiting dissolved rare earth element concentrations: A review of recent information. Aqua. Geochem., 1, 157-173
DOI
|
17 |
Masuda, A. and Ikeuchi, Y., 1979, Lanthanide tetrad effect observed in marine environment. Geochem. J., 13, 19-22
DOI
|
18 |
Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995, 1994 compilation values for GSJ reference samples, 'Igneous rock series'. Geochem. J., 29, 91-95
DOI
|
19 |
Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systemsevidence fromY/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323-333
DOI
ScienceOn
|
20 |
Irber, W., 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 63, 489-508
DOI
ScienceOn
|
21 |
Kawabe, I., 1992, Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory. Geochem. J., 26, 309-335
DOI
|
22 |
Tang, J. and Johannesson, K.H., 2003, Speciation of rare earth elements in natural terrestrial waters; assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta, 67, 2321-2339
DOI
ScienceOn
|
23 |
Lee, S. G., Shin, S. C., Jin, M. S., Ogasawara, M. and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precam. Res., 139, 101- 120
DOI
ScienceOn
|
24 |
Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. Jour., 9, 183-184
DOI
|
25 |
Johannesson, K.H. and Hendry, M.J., 2000, Rare-earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 64, 1493-1509
DOI
ScienceOn
|
26 |
Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124
DOI
|
27 |
Johannesson, K.H. and Lyons, W.B., 1994, The rare earth element geochemistry of Monor Lake water and the importance of carbonate complexing. Limm. Ocean., 39, 1141-1154
DOI
ScienceOn
|
28 |
Govindaraju, K., 1994, 1994 compilation of working values and description for 383 geostandards. Geostand. News., 18, 1-158
DOI
|
29 |
Janssen, R.P.T. and Verweij, W., 2003, Geochemistry of some rare earth elements in groundwaters, Verlingsbeek, The Netherlands, Water Res., 37, 1320-1350
DOI
ScienceOn
|
30 |
Lee, S. G., Masuda, A. and Kim, H. S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67
DOI
ScienceOn
|
31 |
Sen Gupta, J.G. and Bertrand, N. B., 1995, Direct ICP-MS determination of trace and ultratrace elements in geological material after decomposition in a microwave oven I. Quantitation of Y, th, U and the lanthanides. Talanta, 42, 1595-1607
DOI
ScienceOn
|
32 |
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319
DOI
ScienceOn
|
33 |
Liang, Q. Jiang, H. and Gregorie, D.C., 2000, Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 51, 507-513
DOI
ScienceOn
|
34 |
Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312 p
|
35 |
McLennan, S. M., 1994, Rare earth element geochemistry and the 'tetrad' effect. Geochim. Cosmochim. Acta, 58, 2025-2033
DOI
ScienceOn
|
36 |
Coryell, C. G., Chase, J. W. and Winchester, J. W., 1963, A procedure for geochemical interpretation of terrestrial rare-earth abundances patterns. Jour. Geophys. Res., 68, 559-566
DOI
|
37 |
Robinson P., Higgins, N.C. and Jenner, G. A., 1986, Determination of rare-earth elements, yttrium and scandium in rocks by an ion exchange-X-Ray fluorescence technique. Chem. Geol. 55, 121-137
DOI
ScienceOn
|
38 |
Totland, M., Jarvis, I. and Jarvis, K. E., 1992, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chem. Geol., 95, 35-62
DOI
ScienceOn
|
39 |
Johannesson, K.H. and Lyons, W.B., 1995, Rare-earth element geochemistry of Color Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chem. Geol., 119, 209-223
DOI
ScienceOn
|
40 |
Shabani, M.B., and Masuda, A., 1991, Sample Introduction by On-Line Two-Stage Solvent Extraction and Back- Extraction to Eliminate Matrix Interference and to Enhance Sensitivity in the Determination of Rare-Earth Elements with Inductively Coupled Plasma Mass Spectro. Anal. Chem., 63, 2099-2105
DOI
|