• Title/Summary/Keyword: zymogram

Search Result 106, Processing Time 0.027 seconds

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

Isolation and Enzyme Production of a Mannanase-producing Strain, Bacillus sp. WL-3. (Mannanase를 생산하는 Bacillus sp. WL-3 균주의 분리와 효소 생산성)

  • 오영필;이정민;조기행;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.247-252
    • /
    • 2002
  • A bacterium producing the extracellular mannanase was isolated from Korean formented food and has been identified as a member of the genus Bacillus from the result of the phylogenic analysis based on partial 165 rRNA sequences. The isolate, named Bacillus sp. WL-3, was shown to be similar to B. subtilis strain on the basis of its biochemical properties. The mannanase of culture supematant was the most active at $55^{\circ}C$ and pH 6.0. The additional carbohydrates including u-cellulose, avicel, oat spelt xylan, guar gum and locust bean gum (LBG) increased the mannanase productivity. Especially, the maximum mannanase productivity was reached 65.5 U/ml in LB medium supplemented with 0.5% (w/v) LBG, which was 131-folds more than that in LB medium. It was sug-gested that the increase of mannanase production was owing to induction of mannanase biosynthesis by LBG hydrolysates transported following initial hydrolysis by extracellular mannanase during the cell growth. The molec-ular weight of WL-3 mannanase was estimated to approximately 38.0 kDa by zymogram on SDS-PAGE.

Cloning and Characterization of Pseudomonas mucidolens Exoinulinase

  • Kwon, Young-Man;Kim, Hwa-Young;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.238-243
    • /
    • 2000
  • An exoinulinase (${\beta}-D-fructofuranosidase$) gene was cloned by chromosome walking along the upstream region of the endoinulinase gene of Pseudomonas mucidolens isolated from soil. the exoinulinase gene consisted of an ORF of 0,506 bp encoding a polypeptide of 501 amino acids with a deduced molecular weight of 55,000. The exoinulinase produced by the recombinant Escherichia coli $DH5{\alpha}$ strain was also purified to homogeneity as determined by SDS-PAGE and a zymogram. The molecular weight of the purified exoinulinase according to both SDS-PAGE and gel filtration matched the deduced molecular weight of the protein described above, thereby indicating that the native form of the exoinulinase was a monomer. The purified enzyme hydrolyzed activity value of 2.0. Furthermore, no inulo-oligomers were liberated from the inulin substrate in the enzymatic reaction mixtures incubated for 90 min at $55^{\circ}C$. Taken together, these results indicate that the purified ${\beta}-D-fructofuranosidase$ was an exoinulinase. The pH and temperature optima of the exoinulinase were pH 6.0 and $55^{\circ}C$, respectively. the enzymehad no apparent requirement for a cofactor, and its activity was completely inactivated by $Ag^{+},{\;}Hg^{2+},{\;}and{\;}Zn^{2+}$. Kinetic experiments gave $K_m,{\;}V_{max},{\;}and{\;}K_{cat}$ values for inulin of 11.5 mM, 18 nM/s, and $72{\;}s^{-1}$, respectively. the exoinulinase was fairly stable in broad pH conditions (pH 5-9), and at pH 6.0 it showed a residual activity of about 70% after 4 h incubation at $55^{\circ}C$.

  • PDF

Studies on the Insecticide Resistance of the German Cockroach(Blattella germanica L.). III. Comparison of Esterase Activity (바퀴(Blattella germanica L.)의 살충제 저항성에 관한 연구. 3. Esterase활성비교)

  • 방종렬;김정화;이형래
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.265-270
    • /
    • 1993
  • The German cockroach(Blattelia germanica) population~ were successIVely selected with ch\orpyrifos and permethrin during the six generations. The resulting resistant $R_{chtorpenfos}$(Rc) and $R_{permethnn}$(Rp) stra.ins were studied to investigate the esterase activity by spectrophotometer, filter parper test, and electrophoresis. Esterase-$\alpha$ activities by filter paper test showed 2.65 and LBZ times higher in the Rc and Rp strains than the susceptible strain, respectively. ln the spectrophoLometer method, the esterase activit18s to $\alpha$-and $\beta$-naphthyl acetate were increased 2.34 and 5.28 times in the Rc than susceptible strain, and 1.48 and 2.92 times in the Rp Limn susceptible stram, respectlvely. Zymogram patterns of eslerase isozyme by agarose gel electrophoresis showed totally five bands. The Rc and Rp strains showed two additive bands as, Est-2 and Est-3, which were not shown in the susceptible strain. but the Rp strain dId not show Est-5 bands which was COlumon in the Rc and susceptible strams.

  • PDF

Characterization of α-agarase from Alteromonas sp. SH-1 (Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사)

  • Lee, Sol-Ji;Shin, Da-Young;Kim, Jae-Deog;Lee, Dong-Geun;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Optimal Production and Characterization of Laccase from Fomitella fraxinea Mycelia (Fomitella fraxinea 균사체로부터 Laccase의 최적생산 및 효소적 특성)

  • Park Kyung-Mi;Park Sang-Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.228-234
    • /
    • 2006
  • The culture conditions were investigated to maximize the production of laccase from Fomitella fraxinea mycelia. Among the tested media, mushroom complete medium (MCM) showed the highest production of the enzyme. The optimum culture medium was 2% dextrose, 0.4% $(NH_4)_{2}HPO_4$, 0.05% $Na_{2}HPO_{4}{\cdot}7H_{2}O$, and 0.05% KCl as carbon, nitrogen, phosphorus, and inorganic salt sources respectively. SDS-PAGE followed by laccase activity staining using 2,6-djmethoxyphenol as the substrate was performed to identify the laccase activity under culture conditions studied. Zymogram analysis of the culture supernatant showed a laccase band with a molecular mass of 50 kDa. The enzyme production from F. fraxinea was reached to the highest level after the cultivation for 10 days at $25^{\circ}C$ and initial pH 8. The enzyme activity of the culture supernatant was most active at $50^{\circ}C$ and pH 5.

Xylanase properties of Bacillus subtilis AB-55 isolated from waste mushroom bed of Agaricus bisporus (양송이 수확 후 배지로부터 분리한 Bacillus subtilis AB-55가 생산하는 xylanase의 특성)

  • Choi, Won-Ho;Choi, Yong-Su;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.255-261
    • /
    • 2012
  • A bacterium AB-55, isolated from waste mushroom bed of Agaricus bisporus in Sukseong-myeon, Buyeo-gun, Chungcheongnam-do, Korea, was screened onto xylan agar congo-red plate by the xylanolysis method and was used to produce an xylanase in shaker buffle flask cultures containing oat spelt xylans. The phylogenetic analysis using 16S rRNA gene sequence data showed that the strain AB-55 had the highest homology (99.0%) with Bacillus subtilis and it was named as Bacillus subtilis AB-55. A xylanase was purified by ammonium sulfate precipitation (50~80%), gel filtration on sephacryl S-300, and ion exchange chromatography on DEAE sepharose FF. The molecular weight of the xylanase was estimated as 44 kDa by SDS-PAGE. Optimal pH and temperature for the xylanase activity was pH 7 and $50^{\circ}C$, respectively. N-terminal amino acid sequence of the enzyme was identified as Ser-Ala-Val-Lys-His-Gly-Ala-Ile-Val-Phe. The substrate specificity of the enzyme exhibited that it hydrolyzed efficiently oat spelt xylan as well as beechwood xylan, but showed no activity against Avicel and carboxymethyl clellulose (CMC). The enzyme activity was enhanced by $Fe^{2+}$ and $Mn^{2+}$ whereas was entirely inhibited by $Hg^+$.

Optimal Conditions for Laccase Production from the White-rot Fungus Marasmius scorodonius (백색부후균 Marasmius scorodonius 유래 laccase의 최적생산조건)

  • Lim, Su-Jin;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • In this study about the optimum conditions for the production of laccase, a polyphenol oxidase involved in lignin degradation, from Marasmius scorodonius, a white-rot fungus garlic mushroom, were determined. Amongst the tested media used for the enzyme's production, YM medium (1% dextrose, 0.5% malt extract, 0.3% yeast extract) allowed for the highest activity of the enzyme. Then, to optimize the culture conditions for laccase activity, the influence of various carbon and nitrogen sources was investigated in YM medium. Among various carbon and nitrogen sources, 1% galactose and 0.4% yeast extract resulted in the highest production of the enzyme, respectively. Enzyme production attained its highest level after cultivation for 15 days at $25^{\circ}C$. Zymogram analysis of the culture supernatant showed two isoenzymatic bands with molecular masses of 60-70 kDa. The optimum pH and temperature for enzyme activity were 3.4 and $75^{\circ}C$, respectively.

Effects of Interleukin-1${\beta}$ and Tumor Necrosis $Factor-{\alpha}$ on the Release of Collagenase and Gelatinase from Osteoblasts

  • Eun, Jong-Gab;Baek, Dong-Heon;Kim, Se-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.269-274
    • /
    • 2002
  • A large number of factors such as osteotropic hormones, cytokines, or growth factors are related to the bone remodeling which is characterized by the coupling of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Recent investigations have indicated that cytokines such as $interleukin-1{\beta}\;(IL-1{\beta})$ and tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ play a potential role in the bone resorption associated with a variety of pathological conditions such as inflammatory osteolytic disease. Collagen is the most abundant protein of the extracellular matrix of bone, and the participation of collagenase in bone resorption has been widely investigated. In this study, effects of $IL-1{\beta}$ and $TNF-{\alpha}$ on the release of collagenase from osteoblastic cells were measured. The gelatinase activity was also measured by gel substrate analysis (zymography) after electrophoresis of conditioned media of osteoblastic cell culture. $IL-1{\beta}$ increased the collagenase activity in ROS17/2.8 and HOS cell culture. $TNF-{\alpha}$ also increased the collagenase activity of osteoblastic cells. When two kinds of cytokines were treated simultaneously in the culture of osteoblastic cells, synergistic increase of collagenase activity was seen in ROS17/2.8 cells. $IL-1{\beta}$ and $TNF-{\alpha}$ significantly increased the collagenase activity after 6 hour treatment in the osteoblastic cell culture, and there was no additional increase according to the culture period. Osteoblastic cells released the gelatinase and molecular weight of this enzyme was measured about 70 KDa as assessed by zymogram. $IL-1{\beta}$ and $TNF-{\alpha}$ showed increase of the gelatinase activity produced by ROS17/2.8 and HOS cells. Taken together, this study suggested that $IL-1{\beta}$ and $TNF-{\alpha}$ can modulate bone metabolism, at least in part, by increased release of collagenase and gelatinase from osteoblasts.