• Title/Summary/Keyword: zygomaticus major muscle

Search Result 10, Processing Time 0.022 seconds

An anatomic study of the zygomaticus major and minor muscles (임상가를 위한 특집 1 - 큰광대근과 작은광대근의 해부학적 연구)

  • Choi, Da-Yae;Hu, Kyung-Seok;Kim, Hee-Jin
    • The Journal of the Korean dental association
    • /
    • v.50 no.10
    • /
    • pp.616-619
    • /
    • 2012
  • The aim of this study was to clarify the arrangement of the zygomaticus major muscle, and to describe morphology of zygomaticus minor muscle. After a detailed dissection, the zygomaticus muscles were observed in 66 embalmed cadavers. It was found that the insertion of zygomaticus major was divided into superficial and deep bands(42/70, 60%). Zygomaticus minor was inserted not only upper lip also alar portion(5/54, 9.2%). The arrangement and insertion patterns of the zygomaticus muscles in this study are expected to provide critical information for understanding or smile pattern and treatment or fold.

A study on muscular system of Foot yangmyung meridian-muscle (족양명경근(足陽明經筋)의 근육학적(筋肉學的) 고찰(考察))

  • Song, Jong-Keun;Yim, Yun-Kyoung
    • Korean Journal of Acupuncture
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2006
  • Objective & Methods: This study is performed to understand the interrelation between 'Foot yangmyung meridian-muscle' and 'muscular system'. We studied the literatures on Meridian-muscle theory, anatomical muscular system, myofascial pain syndrome and the theory of anatomy trains. Results & Conclusion: 1. It is considered that Foot yangmyung meridian-muscle includes extensor digitorum longus m., tibialis anterior m., quadriceps femoris m., rectus abdominis m., pectoralis major m., sternocleidomastoid m., platysma m., orbicular oris m., zygomaticus major m., zygomaticus minor m., masseter m., Gluteus medius m., and Obliquus externus abdominis m. 2. The symptoms of Foot yangmyung meridian-muscle are similar to the myofascial pain syndrome with referred pain of extensor digitorum longus m., tibialis anterior m., quadriceps femoris m., rectus abdominis m., obliquus abdominis m., masseter m. 3. Superficial frontal line in anatomy trains is similar to the pathway of Foot yangmyung meridian-muscle, and more studies are needed in anatomy and physiology to support the continuity of muscular system of Foot yangmyung meridian-muscle in aspect of anatomy trains.

  • PDF

Study on Hand Greater Yang Skin from the Viewpoint of Human Anatomy

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • Objectives: This study was carried out to analyse Hand Greater Yang Skin in human. Methods: Hand Greater Yang meridian was labeled with latex in the body surface of the cadaver. And subsequently body among superficial fascia and muscular layer were dissected in order to observe internal structures. Results : A depth of Skin encompasses a common integument and a immediately below superficial fascia, this study established Skin boundary with adjacent structures such as relative muscle, tendon as compass. The Skin area of the Hand Greater Yang in human are as follows: The skin close to 0.1chon ulnad of $5^{th}$ nail angle, ulnad base of $5^{th}$ phalanx, ulnad head of $5^{th}$ metacapus(relevant muscle: abductor digiti minimi muscle), ulnad of hamate, tip of ulnar styloid process(extensor carpi ulnaris tendon), radiad of ulnar styloid process, 2cm below midpoint between Sohae and Yanggok(extensor carpi ulnaris), between medial epicondyle of humerus and olecranon of ulnar(ulnar nerve), The skin close to deltoid muscle, trapezius muscle, platysma muscle, inner muscles such as teres major muscle, infraspinatus muscle, supraspinatus muscle, levator scapulae muscle, splenius cervicis muscle, splenius capitis muscle, sternocleidomastoid muscle, digastric muscle, stylohyoid muscle, zygomaticus major muscle, auricularis anterior muscle. Conclusions: The Skin area of the Hand Greater Yang from the anatomical viewpoint seems to be the skin area outside the superficial fascia or muscles involved in the pathway of Hand Greater Yang meridian, collateral meridian, meridian muscle, with the condition that we consider adjacent skins.

A Study on Muscular System of Foot Three Yang Meridian-Muscle (족삼양경근(足三陽經筋)의 근육학적(筋肉學的) 고찰(考察))

  • Lee, Myung-Sun;Hong, Seung-Won;Lee, Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.25 no.2
    • /
    • pp.1-32
    • /
    • 2008
  • Objectives : This study was performed to understand the interrelation between 'Foot three yang meridian-muscle' and 'muscular system'. Methods : We have researched some of the literatures on Meridian-muscle theory, anatomical muscular system, myofascial pain syndrome and anatomy trains. And especially we have compared myofascial pain syndrome to anatomy trains and researched what kind of relationship is exist between them. Results : It is considered that Foot taeyang meridian-muscle includes Abductor digiti minimi m., Gastrocnemius m., Biceps femoris m., Longissimus m., Omohyoid m., Occipital m., Frontal m., Orbicularis oculi m., Trapezius m., Sternocleidomastoid m., Sternohyoid m., Zygomaticus m. Foot soyang meridian-muscle includes Dorsal interosseus m., Tendon of extensor digitorum longus m., Extensor digitorum longus m., Iliotibial band, Vastus lateralis m., Piriformis m., Tensor fasciae latae m., Internal abdominal oblique m., External abdominal oblique m,, Internal intercostal m., External intercostal m., Pectoralis major m., Sternocleidomastoid m., Posterior auricular m., Temporal m., Masseter m., Orbicularis oculi m. Foot yangmyung meridian-muscle includes Extensor digitorum longus m., Vastus lateralis m., Iliotibial band, Iliopsoas m., Anterior tibial m., Rectus femoris m., Sartorius m., Rectus abdominis m., Pectoralis major m., Internal intercostal m., External intercostal m., Sternocleidomastoid m., Masseter m., Levator labii superioris m., Zygomatic major m., Zygomatic minor m., Orbicularis oculi m., Buccinator m. and the symptoms of Foot three yang meridian-muscle are similar to the myofascial pain syndrome. Superficial back line in anatomy trains is similar to the pathway of Foot taeyang meridian-muscle. Lateral Line in anatomy trains is similar to the pathway of Foot soyang meridian-muscle. Superficial Front Arm Line in anatomy trains is similar to the pathway of Foot yangmyung meridian-muscle. Conclusions : There is some difference between myofascial pain syndrome and meridian-muscle theory in that the former explains each muscle individually, while the latter classifies muscular system in the view of integrated organism. More studies are needed in anatomy and physiology to support the integration of muscular system of Foot three yang meridian-muscle in aspect of anatomy trains.

  • PDF

Course and Distribution of Facial Nerve of the Korean Native Goat (한국재래산양 두부의 안면신경 분포에 관한 해부학적 연구)

  • Lee, Heung-shik;Lee, In-se;Kim, Dae-joong
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 1986
  • This study was carried out to investigate the branch and distribution of Nervus facialis of the Korean native goat. The observation was made by dissection of embalmed cadavers of ten Korean native goats. The results were as follows; 1. N. facialis arose from the ventrolateral surface of the medulla oblongata. 2. In the facial canal, N. facialis gave off N. petrosus major, N. stapedius and Chorda tympani. 1) N. petrosus major arose from Ganglion geniculi, passed through the pterygoid canal and terminated in Ganglion pterygopalatinum. 2) Chorda tympani joined N. lingualis at the lateral surface of the internal pterygoid muscle. 3. At the exit of the stylomastoid foramen, N. facialis gave off N. caudalis auricularis, Ramus auricularis internus, Ramus stylohyoideus and Ramus digastricus. 1) N. caudalis auricularis arose by two branches in 6 cases and by a single branch in 4 cases. N. caudalis auricularis gave off branches to the caudoauricuIar muscles and the internal surface of the conchal cavity. 2) Ramus auricularis internus arose by a single branch except in 2 cases in which it arose in common with N. caudalis auricularis. It penetrated the caudolateral surface of the tragus and distributed in the skin of the scapha. 3) Ramus stylohyoideus and Ramus digastricus arose separately from N. facialis. 4. In the deep surface of the parotid gland, N. facialis divided into N. auriculopalpebralis, Ramus buccalis dorsalis and Ramus buccalis ventralis. In 6 cases, N. facialis gave off Ramus buccalis ventralis and then divided into N. auriculopalpebralis and Ramus buccalis dorsalis. In 3 cases, N. facialis trifurcated into Ramus buccalis ventralis, Ramus buccalis dorsalis and N. auriculopalpebralis. In one case, N. facialis gave off N. auriculopalpebralis and then divided into Ramus buccalis dorsalis and Ramus buccalis ventralis. 1) Ramus buccalis ventralis ran along the ventral border of the masseter muscle and distributed to the buccinator and depressor labii inferioris muscles. Ramus buccalis ventralis communicated with a branch of Ramus buccalis dorsalis and N. buccalis. In 2 cases, it also communicated with N. mylohyoideus. 2) Ramus buccalis dorsalis communicated with Ramus transverses faciei, N. buccalis, N. infraorbitalis and a branch of Ramus buccalis ventralis. Ramus buccalis dorsalis distributed to the orbicularis oris, caninus, depressor labii inferioris, levator labii superioris, buccinator, malaris, nasolabialis and zygomaticus muscles. 3) N. auriculopalpebralis gave off Rami auriculares rostrales, which supplied the zygomaticoauricularis muscle, the frontoscutularis muscle and the skin of the base of the ear. N. auriculopalpebralis then continued as Ramus zygomaticus, which innervated the frontal muscle, the lateral surface of the base of the horn, the orbicularis oculi muscle and the adjacent skin of the orbit. N. auriculopalpebralis communicated with Nn. auriculares rostrales and Ramus zygomaticotemporalis. In 7 cases, it also communicated with N. infratrochlearis.

  • PDF

A study on acupoints and muscles used for cosmetic acupuncture (미용침(cosmetic acupuncture)에 응용되는 경혈과 근육에 대한 고찰)

  • Yang, Mi-Sung;Shin, Mi-Sook
    • Korean Journal of Acupuncture
    • /
    • v.26 no.3
    • /
    • pp.13-25
    • /
    • 2009
  • Objectives : This study was performed to investigate acupoints and muscles used for cosmetic acupuncture. We want most clinicians practicing cosmetic acupuncture to understand theoretical background well and to treat cosmetic diseases more diversely by this paper. Methods : We collected useful informations from some books and websites about cosmetic acupuncture and thus could select major acupoints and muscles. Conculsions : The most frequently used acupoints for cosmetic acupoints are as follows ; LI20, ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, SI18, SI19, BL1, BL2, BL3, BL4, TE17, TE18, TE19, TE20, TE21, TE22, TE23, GB1, GB2, GB3, GB4, GB5, GB6, GB7, GB8, GB13, GB14, GV20, GV21, GV22, GV23, GV24, GV25, GV26 and CV24. And head and neck muscles including SCM muscle, plastyma, frontalis, corrugator supercilii, orbicularis oculi, auricularis, temporalis, masseter, pterygoid, zygomaticus and risorius can be used for cosmetic acupuncture. Most acupoints and muscles are located in face and head, which seemed to be concerned with formation of face wrinkles.

  • PDF

Novel anatomical proposal for botulinum neurotoxin injection targeting depressor anguli oris for treating drooping mouth corner

  • Kyu-Ho Yi;Ji-Hyun Lee;Hye-Won Hu;You-Jin Choi;Kangwoo Lee;Hyung-Jin Lee;Hee-Jin Kim
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.161-165
    • /
    • 2023
  • The depressor anguli oris (DAO) muscle is a thin, superficial muscle located below the corner of the mouth. It is the target for botulinum neurotoxin (BoNT) injection therapy, aimed at treating drooping mouth corners. Hyperactivity of the DAO muscle can lead to a sad, tired, or angry appearance in some patients. However, it is difficult to inject BoNT into the DAO muscle because its medial border overlaps with the depressor labii inferioris and its lateral border is adjacent to the risorius, zygomaticus major, and platysma muscles. Moreover, a lack of knowledge of the anatomy of the DAO muscle and the properties of BoNT can lead to side effects, such as asymmetrical smiles. Anatomical-based injection sites were provided for the DAO muscle, and the proper injection technique was reviewed. We proposed optimal injection sites based on the external anatomical landmarks of the face. The aim of these guidelines is to standardize the procedure and maximize the effects of BoNT injections while minimizing adverse events, all by reducing the dose unit and injection points.

Stiffness and Elasticity of the Masticatory and Facial Expression Muscles in Patients with the Masticatory Muscle Pain (저작근통 환자에서 저작근 및 안면표정근의 경도와 탄성도 평가)

  • Kim, Yeon-Shin;Kim, Ki-Suk;Kim, Mee-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.317-324
    • /
    • 2009
  • This study aimed to assess stiffness and elasticity of the masticatory muscle in the patients with the masticatory muscle pain using a tactile sensor and to investigate whether the masticatory muscle pain affects the facial expression muscles. From those who visited Department of Oral Medicine in Dankook University Dental Hospital, 27 patients presenting with unilateral muscle pain and tenderness in the masseter muscle (Ms) were selected (mean age: $36.4{\pm}13.8$ years). Exclusion criterion was those who also had temporomandibular joint (TMJ) disorders or any neurological pain. Muscle stiffness and elasticity for the muscles of mastication and facial expression was investigated with the tactile sensor (Venustron, Axiom Co., JAPAN) and the muscles measured were the Ms, anterior temporal muscle (Ta), frontalis (Fr), inferior orbicularis oculi (Ooci), zygomaticus major (Zm), superior and inferior orbicularis oris (Oors, Oori) and mentalis (Mn). t-tests was used to compare side difference in muscle stiffness and elasticity. Side differences were also compared between diagnostic groups (local muscle soreness (LMS) vs myofascial pain syndrome (MPS) and between acute (< 6M) and chronic ($\geq$ 6M) groups. This study showed that Ms and Zm at affected side exhibited significantly increased stiffness and decreased elasticity as compared to the unaffected side.(p<0.05) There was no significant difference between local muscle soreness and myofascial pain syndrome groups and between acute and chronic groups. The results of this study suggests that masticatory muscle pain in Ms can affect muscle stiffness and elasticity not only for Ms but also for Zm, the facial expression muscle.

Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human (수태양소장경근(手太陽小腸經筋)의 해부학적(解剖學的) 연구(硏究))

  • Park, Kyoung-Sik
    • Journal of Pharmacopuncture
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2004
  • This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1) Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4), pisometacarpal lig.(SI-4), ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6), ulnar collateral lig.(SI-5), ext. digiti minimi m. tendon(SI-6), ext. carpi ulnaris(SI-7), triceps brachii(SI-9), teres major(SI-9), deltoid(SI-10), infraspinatus(SI-10, 11), trapezius(Sl-12, 13, 14, 15), supraspinatus(SI-12, 13), lesser rhomboid(SI-14), erector spinae(SI-14, 15), levator scapular(SI-15), sternocleidomastoid(SI-16, 17), splenius capitis(SI-16), semispinalis capitis(SI-16), digasuicus(SI-17), zygomaticus major(Il-18), masseter(SI-18), auriculoris anterior(SI-19) 2) Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6), br. of mod. antebrachial cutaneous n.(SI-6, 7), br. of post. antebrachial cutaneous n.(SI-6,7), br. of radial n.(SI-7), ulnar n.(SI-8), br. of axillary n.(SI-9), radial n.(SI-9), subscapular n. br.(SI-9), cutaneous n. br. from C7, 8(SI-10, 14), suprascapular n.(SI-10, 11, 12, 13), intercostal n. br. from T2(SI-11), lat. supraclavicular n. br.(SI-12), intercostal n. br. from C8, T1(SI-12), accessory n. br.(SI-12, 13, 14, 15, 16, 17), intercostal n. br. from T1,2(SI-13), dorsal scapular n.(SI-14, 15), cutaneous n. br. from C6, C7(SI-15), transverse cervical n.(SI-16), lesser occipital n. & great auricular n. from cervical plexus(SI-16), cervical n. from C2,3(SI-16), fascial n. br.(SI-17), great auricular n. br.(SI-17), cervical n. br. from C2(SI-17), vagus n.(SI-17),hypoglossal n.(SI-17), glossopharyngeal n.(SI-17), sympathetic trunk(SI-17), zygomatic br. of fascial n.(SI-18), maxillary n. br.(SI-18), auriculotemporal n.(SI-19), temporal br. of fascial n.(SI-19) 3) Blood vessels ; Dorsal digital vein.(SI-1), dorsal br. of proper palmar digital artery(SI-1), br. of dorsal metacarpal a. & v.(SI-2, 3, 4), dorsal carpal br. of ulnar a.(SI-4, 5), post. interosseous a. br.(SI-6,7), post. ulnar recurrent a.(SI-8), circuirflex scapular a.(SI-9, 11) , post. circumflex humeral a. br.(SI-10), suprascapular a.(SI-10, 11, 12, 13), first intercostal a. br.(SI-12, 14), transverse cervical a. br.(SI-12,13,14,15), second intercostal a. br.(SI-13), dorsal scapular a. br.(SI-13, 14, 15), ext. jugular v.(SI-16, 17), occipital a. br.(SI-16), Ext. jugular v. br.(SI-17), post. auricular a.(SI-17), int. jugular v.(SI-17), int. carotid a.(SI-17), transverse fascial a. & v.(SI-18),maxillary a. br.(SI-18), superficial temporal a. & v.(SI-19).

Effects of Oral Parafunction on the Stiffness and Elasticity in the Muscles of the Mastication and Facial Expression (구강악습관이 저작근 및 안면표정근의 경직도 및 탄성도에 미치는 영향)

  • Kim, Seung-Ki;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.1
    • /
    • pp.85-95
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of oral habits on the muscles of mastication and facial expression by means of two parameters: muscle stiffness and elasticity. 10 healthy, fully-dentate male subjects in their twenties were selected for this study; all had normal Class I occlusal relationships. Muscle stiffness and elasticity were measured with a tactile sensor(Venustron, Axiom Co., JAPAN) while subjects were asked to relax and perform various parafunctional activities such unilateral clenching(biting the bite force recorder with a force of 50kg on each subject's preferred side), jaw thrusting and lip bracing. The following muscles were examined: temporalis anterior(Ta), masseter(Mm), frontalis(Fr), inferior orbicularis oculi(OOci), zygomaticus major(Zm), superior and inferior orbularis oris(OOrs and OOri) and mentalis(Mn). Paired t-test, Correlation Coefficients, ANOVA and Multiple Comparison t-tests were used for statistical analysis. Unilateral clenching was highly correlated with bilateral stiffness and elasticity of all the muscles tested. Mm was affected by all three oral habits; Ta was affected by unilateral clenching(p<0.05); Zm was affected by unilateral clenching and OOrs, OOri and Mn were most affected by lip bracing(p<0.05). This study indicates that not only the masticatory muscles but also the muscles of facial expression, mainly circumoral muscles, can be significantly influenced by parafunctional activities such as unilateral clenching and lip bracing.