• Title/Summary/Keyword: zsm-5

Search Result 136, Processing Time 0.022 seconds

Ethylbenzene Separation from Ethylbenzene/p-xylene Mixture with MFI-type Zeolite Membranes (MFI형 제올라이트 분리막을 이용한 에틸벤젠/파라자일렌 분리에 대한 연구)

  • Lee, Gi-Cheon;Jeon, Yukwon;Chu, Young Hwan;Choi, Seonghwan;Seo, Young-Jong;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.476-481
    • /
    • 2013
  • Ethylbenzene (EB) which has a similar physical properties with p-xylene (pX) was separated from EB/pX mixture by using MFI-type zeolite (TS-1, ZSM-5, and Silicalite-1) coated membranes. The zeolites were synthesized by microwave method to reduce the synthesis time and uniformly formed zeolite particles were coated on the ${\alpha}$-almina tubular support with a thickness of $3-4{\mu}m$. Separation factor and permeation flux of the synthesized zeolite coated membranes were measured to survey the best performance of ethylbenzene separation from different composition of EB/pX mixtures. When the EB/pX mixture of 5:5 molar ratio applied for the separation experiment, it represented the highest separation factor. We also have studied about the effect of the atomic composition of zeolites on the separation performance within the temperature range from 160 to $220^{\circ}C$. TS-1 showed the highest permeation flux of $1,666mol/m^{2*}s^*Pa$ and Silicate-1 showed the highest separation factor of 1.73 at $200^{\circ}C$ respectively.

KOH Hydrothermal Synthesis of Zeolites from Hadong Kaolin (KOH수열 처리에 의한 하동카오린으로부터 Zeolite의 합성)

  • 이무강;신현무;임경천
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1321-1327
    • /
    • 2003
  • Two different kinds of cases, with and without addition of noncrystalline silica to the Hadong kaolin were studied to obtain useful information on the synthesis of zeolite. The research was carried out to investigate the formation area and the crystalized degree of zeolite according to a synthetic time, the water content of raw material mixture, KOH concentration, and stirring intensity. In the case of without addition of noncrystalline silica to the Hadong kaolin and the low concentration range of KOH, the structure of the kaolin was not changed. However, when the mole ratio of K2O/SiO$_2$ in natural kaolin was increased, Linde-L zeolite and unknown structure of kaolins, U-1 and U-2 were produced. While in the high concentration range of KOH, the unknown structure of kaolins, U-6 and U-2, were produced and the production rate of U-6 was increased with the increased of K2O/SiO$_2$ mole ratio. In the case of with addition of noncrystalline silica to the Hadong kaolin and treatment with KOH hydrothermal processing, ZSM-5, ZSM-35, and Linde-L zeolites and the mixture of unknown structure of zeolites, U-1, U-2, U-3, and U-4, were obtained. Both cases demonstrated that the synthesis of zeolite from the Hadong kaolin was highly influenced by KOH concentration of raw material mixture.

Improvement of Storage Stability of Apple and Kiwi at Room Temperature Using Pd/ZSM-5 Catalyst and Nonthermal Plasma (Pd/ZSM-5 촉매와 저온 플라즈마를 이용한 사과와 키위의 상온 저장 안정성 향상)

  • Kim, Seung-Geon;Lee, Ho-Won;Mok, Young Sun;Ryu, Seungmin;Jeon, Hyeongwon;Kim, Seong Bong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.547-555
    • /
    • 2021
  • A catalyst-plasma reactor was applied to the storage of agricultural products, e.g., apple and kiwi, to remove the ethylene generated during the storage. Two 1-m3 unit containers were prepared, and the long-term storage stability of the control group at room temperature was compared with that of the experimental group of which the produced ethylene was treated by the catalyst-plasma reactor. In case of the experimental group, a small amount of ozone was injected to the unit container to suppress the growth of microorganisms such as mold. The apples and kiwis were stored at room temperature for 50 and 57 days, respectively, and the changes in ethylene concentration, hardness, sugar content, acidity, and loss rate were compared. The ethylene concentration during the storage for the control group was higher than that for the experimental group, indicating that the ethylene was effectively removed. Hardness, sugar content, and sugar acid ratio after the storage were better than before the storage, and in particular, the storage stability of kiwifruit was improved significantly. In addition, after the storage, the loss rates of apples and kiwis in the control group were 10 and 54.1%, respectively, but the loss rates in the experimental group were 6 and 34.8%, respectively. Therefore, the storage stability of the experimental group was a lot better than that of the control group.

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane (n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구)

  • Hyeonsu Jeong;Younghee Jang;Ye Hwan Lee;Sung Chul Kim;Byung Hun Jeong;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.619-625
    • /
    • 2023
  • In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

Dimethyl Ether Formation Using a Zeolite Catalyst Impregnated with Ceria (세리아 첨가 제오라이트 촉매를 이용한 디메틸 에테르 합성)

  • Kim, Bo-Kyung;Koh, Jae-Cheon;Kim, Beom-Sik;Han, Myung-Wan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • Dimethyl ether draws an attention as a green fuel in recent years. In this study, we investigated dehydration of methanol to produce DME using solid-acid catalysts, a series of zeolite. We found that ceria took a role of promoting the reaction conversion as well as selectivity of DME formation as a cocatalyst to the zeolite catalyst. We varied Si/Al ratio and ceria percentage on the surface of the catalyst to get high performance catalyst. ZSM5-30 with 5 wt% ceria on the surface was found to have excellent DME selectivity and to be little influenced by water content in methanol feed. We proposed a reaction model and obtained kinetic parameters for the DME formation using the catalyst based on experimental results using a microreactor.

Micro Gas Turbine Performance using Catalytic Cracked Ethanol as Fuel (촉매 분해 에탄올을 연료로 사용하는 마이크로 가스터빈의 성능)

  • Choi, Songyi;Koo, Jaye;Yoon, Youngbin
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • In order to verify the possiblity of improving the combustion performance of ethanol using zeolite catalyst and the characteristics of nitrogen oxides and carbon monoxide emission, micro gas turbine experiments were performed using catalytic reaction products, ethanol and kerosene as fuels and the results were compared. The thrust of the catalytic reaction product was lower than that of kerosene, but it was improved by 5% on average compared with the use of ethanol. Nitrogen oxides and carbon monoxide emissions of the catalytic reaction products were measured to be very low overall compared to kerosene. As a result, when the ethanol was reformed using the zeolite catalyst, the engine performance could be improved while maintaining the environment friendliness of the ethanol.

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

Pt/Silicalite 촉매의 제조특성 연구

  • 안도희;백승우;이한수;이성호;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.121-126
    • /
    • 1996
  • 수소동위원소 교환반응에 이용될 수 있는 소수성 백금촉매를 개발하기 위하여, 담체로서 실리카라이트를 합성하였으며, 합성된 실리카라이트가 활성탄이나 ZSM-5보다 더 강한 소수성을 가지는 것을 보였다. 또한, 일반적인 함침법과 이온교환법을 이용하여 백금을 담지시켰으며, 여러가지 방법으로 처리하여 제조한 백금담지 실리카라이트 촉매의 백금분산도를 수소흡착법을 이용하여 측정하였다. 함침법에 의해 제조된 촉매의 백금분산도는 매우 낮았으며, 이온교환법에의해 제조된 촉매는 백금담지량은 적으나 분산도는 높음을 확인하였다.

  • PDF

Decomposition of Benzene by Dielectric Barrier Discharge (유전체 장벽 방전에 의한 벤젠의 분해)

  • Lee, Yong Hun;Lee, Jae-Ho;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Decomposition of benzene and selectivity of byproducts were investigated by using Dielectric Barrier Discharge (DBD) at atmospheric pressure. In order to increase the decomposition rate and selectivity of byproducts, two types of catalysts, H-ZSM-5 and Na-Y, were optionally employed inside the reactor of the process. The decomposition efficiency of benzene was investigated on the DBD and DBD/catalyst systems at various processing parameters including discharge voltage, residence time, and concentration of benzene. The results showed that, compared with the DBD only, the catalyst-assisted DBD process as a hybrid discharge type had an improved decomposition efficiency at the same process conditions of discharge voltage and residence time

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.