• Title/Summary/Keyword: zone of inhibition

Search Result 421, Processing Time 0.021 seconds

Antioxidant and Antibacterial Activities of the Byproducts of Abies holophylla Extract (전나무 부산물 추출물의 항산화 및 항박테리아 활성)

  • Seong, Eun Soo;Kim, Soo Kyung;Lee, Jin Won;Choi, Seung Hyuk;Yoo, Ji Hye;Lim, Jung Dae;Na, Jong Kuk;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2018
  • Background: The extract of Abies holophylla is used as an ingredient in cosmetics. This study assessed the antioxidant and antibacterial activities of the material remaining after the extract is used. Methods and Results: The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl benzothiazoline)-6-sulfonic acid (ABTS) radical scavenging abilities were assessed to determined the free radical scavenging activity. The total phenol and flavonoid contents were determined to measure the antioxidant activity. The DPPH and ABTS radical scavenging activities of the resudual extract were higher (95.61 - 99.42% and 74.26 - 77.98% in water extract respectively) than those of the positive control. In 50% EtOH extract, the total phenol content was $389.84mg{\cdot}GAE/m{\ell}$, and the total flavonoid was $0.15mg{\cdot}QE/m{\ell}$. The minimum inhibition concentration degree for antibacterial activity against Staphylococcus aureus was < 8 to < $125{\mu}g/m{\ell}$ compared to that of the positive control in all extracts. The clear zone against S. aureus was found to be $12.2{\pm}3.8mm$. Conclusions: The A. holophylla byproducts were found to have antioxidant and antibacterial activities. Therefore, the materials remaining after the A. holophylla extract is used in cosmetics has potential functional uses.

Antibacterial Activity of Bacillus sp. DH-9 Isolated from Sea Water (해수 분리 세균 Bacillus sp. DH-9의 항균활성)

  • Kim, Young-Man;Kim, Do-Kyun;Kim, Nam-Hee;Byun, Tae-Hwan;Kim, Ah-Ra;Lee, Eun-Woo;Kwon, Hyun-Ju;Kim, Byung-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Emerging of antibiotic resistance of pathogenic bacteria is now a very serious problem in the clinics to treat the diseases, which have been easy to cure by antibiotic treatments before. Unfortunately, antibiotics developed till now are not effective any more against the resistant bacteria. Lots of efforts to discover new antibiotics having novel and unique structures and functions are really urgent and undergoing in the whole world. In this study, we tried to screen and isolate Same unique bacterial strains producing antibacterial substances from the sea water, which is the poor environment for bacteria 10 make their growing. Three bacterial strains among 916 strains isolated showed inhibition clear zone on the marine agar plate growing pathogenic bacteria including Acinetobacter baumannii, Edwardsiella tarda, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica. One of them, which was identified as Bacillus sp. DH-9 from 16S rRNA gene analysis, showed especially considerable antibacterial activity against S. aureus which is notorious for methicillin resistant S. aureus (MRSA). The growth of S. aureus was totally inhibited when the supernatant of Bacillus sp. DH-9 culture was treated on.

Antagonistic activity of Streptomyces apecies against Fusarium solani causing ginseng root rot (인삼뿌리 썩음 병균 Fusarium solane에 대한 Streptomyces species의 길한작용)

  • 정영륜;오승환;정후섭
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 1989
  • Antagonistic effects of Streptomyces species aganinst Fusarium solani causing ginseng root rot were investigated in terms of chitinase activity and growth inhibition in vitro. Among 131 isolates of streptomycetes obtained from ginseng cultivating soil, 9 isolates producing large clear zone around the colony on a chitin agar medium were selected for further study. All 9 isolates produced chitinase in a range from 0.10 to 0.38 U lysing cells of F. solani and inhibited germination of the conidia. In the ten-fold condentrated culture filtrate of S. alboniger ST59 and S. roseolilacinus ST129, the number of conidia of F. solane was reduced to about 20% of original count within 14 days. When S. alboniger ST59 and F. solani were grown simultaneously in the mineral saly medium, chitinase activity increased with incubation period, whereas mycelial volume of F. solani decreased. In a chitin added mineral salt medium, chitinase activity increased during the first four days and maintained steady level until the 8th day, and increased thereafter. S. alboniger ST59 lysed mycelia, conidia and even chlamydospores of F. solani. It is probable that the antagonistic activity of this streptomycete against F. solani is the lysis of fungal cell wall by streptomycete producing chitinase affected by antifungal substances.

  • PDF

Characterization of Antibiotic Resistance of Aeromonas spp. and Pseudomonas spp. Isolated from Domestic Aquatic Animals (국내 수산생물로부터 분리된 Aeromonas spp. 및 Pseudomonas spp.의 항생제 내성에 관한 특성 분석)

  • Ye Ji Kim;Lyu Jin Jun;Young Juhn Lee;Ye Jin Ko;Yeong Eun Oh;Soo Ji Wo;Myoung Sug Kim;Joon Bum Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.388-400
    • /
    • 2023
  • Aeromonas spp. and Pseudomonas spp. are opportunistic pathogens widely distributed in the aquatic environment. To test the antibiotic susceptibility, the MIC of the 18 antibiotics mainly used in aquaculture were measured. Aeromonas spp. and Pseudomonas spp. straoms had different resistance patterns against most antibiotics. The MIC of tetracycline for four Aeromonas spp. strains (10.5%) was < 0.25 ㎍/mL. However, 0.5-4 ㎍/mL tetracycline inhibited most Pseudomonas spp. strains. The tet resistance performance of 14 genes including tet(B), tet(E), and tet(M) were investigated. Investigating, the tetracycline resistance gene of 38 Aeromonas spp. strains detected tet(A) in 21 strains (55.3%). Two Pseudomonas spp. strains showed high MIC values and no inhibition zone. tet gene analysis detected tet(D) in only one strain (5%).

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Anti-oxidant and Anti-inflammation Activities of Prunus persica Flos (도화(桃花, Prunus persica Flos)의 항산화 및 항염증 활성)

  • Lee, Jin-Young;An, Bong-Jeun
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.162-169
    • /
    • 2010
  • The solvent extracts of Prunus persica Flos were investigated for the activities of anti-oxidant and anti-inflammation to apply as a functional ingredient for cosmetic products. The electron donating ability of both ethanol (PPE) or acetone (PPA) extracts of P. persica Flos was above 90.0% at the concentration of 500ppm. The superoxide dismutase (SOD)-like activity of P. persica Flos extracts (PPE, PPA) were approximately 40.0% at 1,000 ppm. The xanthine oxidase inhibitory effect of P. persica Flos extracts (PPE, PPA) was approximately 30.0% at 1,000 ppm and equivalent to that of ascorbic acid. Hyaluronidase inhibition activity related to the anti-inflammation effect was 35.0% with the treatment of P. persica Flos extracts (PPW, PPE, PPA) at 1,000 ppm, respectively. In the experiment of anti-inflammation effect, P. persica Flos extracts (PPW, PPE, PPA) inhibited the generation of nitric oxide. In the antimicrobial activity test against the human skin-resident microflora such as Staphylococcus epidermidis and Propionibacterium acnes, a clear zone was identified from 4mg/disc in P. persica Flos (PPE) extract.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya

  • Devi, Lamabam Sophiya;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400-3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5-50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, $Staphylococcus$ $aureus$ MTCC96, $Streptococcus$ $pyogenes$ MTCC1925, $Salmonella$ $enterica$ MTCC735 and $Enterococcus$ $faecalis$ MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications.

Biological Control with Streptomyces sp. on Fusarium oxysporum f. sp. vasinfectum and Phytophthora nicotianae var. parasitica Causing Sesame Wilt and Blight (Streptomyces sp. 에 의한 참깨 시들음병 (Fusarium oxysporum f. sp. vasinfectum) 및 역병 (Phytophthora nicotianae var. parasitica)의 생물학적(生物學的) 방제(防除))

  • Chung, Bong-Koo;Hong, Ki-Sung
    • The Korean Journal of Mycology
    • /
    • v.19 no.3
    • /
    • pp.231-237
    • /
    • 1991
  • This study was conducted in order to find out biological control of sesame wilt and blight caused by Fusarium of oxysporum f. sp. vasinfectum and Phytophthora nicotianae var. parasitica by using Streptomyces spp. Two sesame pathogens, Fusarium oxysporum f. sp. vasinfectum and Phytophthora nicotianae var. parasitica were purely isolated from diseased sesame plants of the field. Streptomyces species were isolated from 72 soil samples collected from red pepper and sesame uplands in Chungbuk and selected as antagonists according to the results of dual culture. The selected Streptomyces isolates such as St-11 and St-20 were confirmed their antagonistic effect through mycelial inhibition zone and inhibitory effects on the mycelial growth of the pathogens by culture filterate of the antagonists. Inhibitory effects on the conidial germination of Fusarium oxysporum vasinfectum and Phytophthora nicotianae parasitica by the antagonists were also tested in addition to mycelial Iysis. The antagonists St-11 and St-20 showed inhibitory effect on growth of sesame seedlings after seeds soaked in the suspension. Effect of soil inoculation with antagonist St-11 showed 40 to 78 percent of control effect for two diseases in comparison with control under greenhouse.

  • PDF