• 제목/요약/키워드: zone method

검색결과 3,270건 처리시간 0.033초

Rigid Plasticity Finite Element Analysis of the Bending of Extrusion Product Using the Square dies (2차원평원 압출가공의 굽힘에 관한 강소성 유한요소 해석)

  • 박대윤
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.80-83
    • /
    • 1999
  • Rigid Plasticity Finite Element Analysis is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric square dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric square dies is caused by the eccentricity of square dies. The deviated velocity is changed with the distance form the center of cross-section of the workpiece. The results show that the curving of products and the shapes of the dead metal zone are determined by Rigid Plasticity Finite Element Analysis and that the curvature of the extruded products increases with the eccentricity.

  • PDF

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

An Enhanced Zone 3 Algorithm of a Distance Relay using Transient Components and State Diagram (과도성분과 상태도를 이용한 거리 계전기의 향상된 Zone 3 알고리즘)

  • Heo, J.Y.;Kim, C.H.;Park, N.O.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.245-247
    • /
    • 2003
  • Zone 3 of the distance relay is used to provide the remote back-up protection in case of the failure of the primary protection. However, the risk for mal-operations under stressed conditions such as heavy loading, voltage and transient instability is usually high. Zone 3 is used in combination with the derivatives of the voltage, and current, etc to prevent mal-operations. Sometimes, the impedance characteristics that restrict the tripping area of relay are used to avoid the mal-operations due to load encroachment. This paper presents a novel zone 3 scheme based on combining the steady-state components(i.e. 60Hz) and the transient components(TCs) using a state diagram that visualizes the sequence of studies that emanate from the sequence of events. The simulation results show that the novel zone 3 distance relay elements using the proposed method operates correctly for the various events.

  • PDF

A Study on the Improvement of the Silver-Zone Selecting Method (노인보호구역 지정방법 개선에 관한 연구)

  • Kim, Jang-Wook;Hong, Joo-Hee;Kim, Jeong-Hyun;Lee, Soo-Beom
    • Journal of the Korean Society of Safety
    • /
    • 제24권1호
    • /
    • pp.78-88
    • /
    • 2009
  • As the silver population rapidly increased, it became more urgent to establish a scheme of the traffic safety for the old. As part of the scheme, a polity to apply 'designation of the silver zone' was legislated into law. However, the standard quoting 'the silver zone should be within 300m - radius of the relevant facility' was considered homogeneous and even limited to apply its original objective. This study was to introduce a new standard to select the silver zone reflecting the actual scale. Consequently, I hope that this study would be useful reference for further development and the approach in the research could be legislated into law for more efficient designation and operation of the silver zone.

The TRC Test for Cold Crack Susceptibility of Welded Zone for ABS EH32 Steel (인장구속 균열시험에 의한 ABS EH 32강 용접부 저온 균열 감수성 시험)

  • 정수원;박동환;김대헌
    • Journal of Welding and Joining
    • /
    • 제2권2호
    • /
    • pp.62-69
    • /
    • 1984
  • In this study, cold crack susceptibility of high strength steel (ABS EH32 Steel) welded zone with shielded metal are welding was investigated by tensile restraint cracking test method. Effects of diffusible hydrogen content on root cracking, lower critical stress, crack initiation and fracture mode, hardness value distribution of welded zone and fractograph were mainly investigated. Following conclusions are made: 1. In the view of the lower critical stress level, wet electrode, containing much diffusible hydrogen content shows lower value than dried electrode. 2. Hardness value(Hv 5kg) in Heat Affected Zone of wet electrode is higher than that of dried electrode caused by hydrogen embrittlement. 3. In the case of wet electrode, root crack is initiated and propagated in Heat Affected Zone and then propagated to weld metal, but using of dried electrode, root crack is initiated in Heat Affected Zone and propagated to weld metal without propagating in HAZ. 4. For wet electrode, quasi-cleavage fracture mode is majorly observed on the fracture surface of HAZ and partially of weld metal due to hydrogen embrittlement.

  • PDF

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.

Characteristics of Hardening Zone by Suction Pressure in Suction Drain Method (석션드레인 공법에서 적용 부압에 따른 Hardening Zone의 특성)

  • Han, Sang-Jae;Kim, Ki-Nyun;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권2C호
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, a series of laboratory column test on Suction Drain Method which is one of the way to make an soft ground improvement were conducted in order to investigate the effect of the Hardening Zones and the ratio of improvements depending on periods of the improvements and various applied suction pressures. On this occasion, the experimental conditions are followings; in the case of the periods of effectiveness, 4 days, 8 days, 12 days, 16 days, 20 days and in the case of the applied pressures of the Suction are -20 kPa, -40 kPa, -60 kPa and -80 kPa were carried out. As a result of test, settlement increased with suction pressure and duration increase, and gradually converged. Also, as comparing permeability decrease ratio with which calculated back from water content and numerically predicted using Hansbo's radial consolidation theory, measured value was almost coincide with predicted value when permeability decrease ratio was assumed as 2~3. Furthermore, the hardening zone was appeared within 7~8 cm of whole radial (25 cm).

A Study on Behavior for Anchorage Zone in Prestressed Double T Beam Using Strut-Tie Model (스트럿-타이 모델을 이용한 프리스트레스트 더블 T형 보의 정착부 거동 연구)

  • 김종욱;이두성;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.425-430
    • /
    • 2002
  • This thesis is a study on behavior for anchorage zone in prestressed double T beam using strut-tie model. Stress conditions of Anchorage zone in prestressed double T beam are very disturbed because large concentrated forces act on relatively small areas. Hence, anchorage zone must be considered in Design of prestressed double T beam. If irrational design or irrational construction be conducted, that may lose stability in capacity as structure. In current design practice, certain parts of structure are designed with extreme accuracy, while anchorage zone in prestressed double T beam is designed using common sense, and experience. Therefore, it is generally very conservative. For that reason, logical, reasonable concept and accuracies are desired at design of anchorage zone in prestressed double T beam. Strut-tie method satisfies those desires. In this thesis, anchorage zone in prestressed double T beam is analyzed by considering prestressing forces. Strut-tie model is constructed based on principle stress trajectory obtained from 3D-finite element analysis in anchorage zone, and amounts of reinforcement be obtained. Results of analysis are compared with the way used in current design practice, and this thesis presents that strut-tie model can be an economical design than current design methods without losing the degree of safety.

  • PDF

A Study on the Evaluatioin Methods for the Rear Safety Zone of Portable Guided Missile (휴대용 유도탄의 후방 안전영역 평가방법에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • 제30권2호
    • /
    • pp.63-69
    • /
    • 2015
  • Recoilless weapons, which lead strong back blast and impulse noise more than 160 dB, have been used in compliance with the regulation of the safety zone for the safe operations. However, the safety zone regulations for the newly developed weapons should be prepared since the existing guidelines do not provide any information concerning the reason for the safety zone. In this study, the outdoor launch tests were performed to collect the data such as noise, pressure and temperature of the back blast. An assessment method using data obtained from launch tests has been proposed to determine the safety zone. The safety zone has been determined with consideration for the following criteria: Impulse noise, temperature and pressure of the back blast and blast angle. As a results, new safety zones for them have been established for the recoilless weapon developed by ADD (Agency for Defense Development). We expect that this research can be used as a guideline for establishing a new safety zone regulation of similar weapon to be developed.