• Title/Summary/Keyword: zirconia-alumina

Search Result 132, Processing Time 0.029 seconds

Effects of the Addition of Alumina on the Mechanical Properties of Cast Zirconia Sintered Body (주입성형한 지르코니아 소결체의 기계적 성질에 미치는 알루미나 첨가의 영향)

  • Lee, Dong-Yoon;Jo, Jun-Ho;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Purpose: Zirconia blocks for all ceramic dentures are divided into two groups. One is pre-heated block and the other is binder added block. In this study, the possibility of recycling the remained parts of binder added block after CAD/CAM machining with slip casting process was investigated. Methods: Owing to the binder added block contain large amount of organic matter, Binder burn-out was must be carried out before ball milling for preparing the casting slip. Binder burn-out was accomplished at $600^{\circ}C$ for 10 hours. Ball milling was performed with 5mm zirconia ball and 60mm polyethylene bottle. From 0% to 5% at 1% intervals of alumina was added to zirconia powder for preparing slip. Solid casting was achieved with plaster mold. Cast bodies were dried and sintered at $1,500^{\circ}C$ for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM, EDS and XRD analysis were executed. Results: Optimum slips for casting was prepared with 300g ball, 100g powder, and 180g distilled water. Cast body without alumina showed 26% of linear shrinkage, 6.07 of apparent density, and 470MPa of three point bend strength. On the other hand, as received zirconia block, which was sintered at the same conditions, showed 23% of linear shrinkage, 6.10 of apparent density, and 680MPa of three point bend strength. When 3% of alumina was added to zirconia, sintered body showed 23% of linear shrinkage, 6.10 of apparent density, and 780MPa of three point bend strength. SEM photomicrographs and EDS analysis showed alumina particles uniformly dispersed in zirconia matrix, and XRD analysis showed no phase transformation of tetragonal zirconia particles was occurred when alumina was added. Conclusion: According to the all of this experimental results, 3% of alumina added cast zirconia body showed excellent mechanical properties more than as received binder containing zirconia block.

Preparation and Sintering of Zirconia-Toughnened Alumina Powder (지르코니아 인성강화 알루미나 분체의 제조 및 소결)

  • Rhee, Jhun;Choi, Sang-Wook;Han, Ki-Sung;Kim, Seung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.167-176
    • /
    • 1992
  • Zirconia-toughnened alumina(ZTA) powders that were uniformly coated with zirconia and yttria on the surface of alumina particles were prepared in order to inhibit the grain growth of alumina. Alumina particles were ultrasonically dispersed in the ethanol solution of Zr-n-propoxide, and then the Zr-alkoxide was hydrolyzed. Hydrated zironia as thin film was stabilized to tetragonal crystalline form by doping yttria as a stabilizer. The prepared ZTA powders had the good sinterability even at the lower temperature. As a result, the sintered bodies showed the enhanced fracture toughness compared with pure alumina. The relative density and fracture toughness(KIC) of the ZTA bodies sintered at 1550$^{\circ}C$ were 98% and 5 MPa$.$m1/2 respectively.

  • PDF

Properties of Yttria Stabilized Zirconia-Alumina Powders Prepared by Coprecipitation Method (공침법으로 제조한 아트리아 안정화 지르코니아-알루미나 분말의 특성)

  • 오경영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1113-1120
    • /
    • 1997
  • The 2, 4, 6 and 8mol% Y2O3 doped-ZrO2 powders (20 kinds) with the addedtion of Al2O3 upto 8wt% were prepared by coprecipitation method using the zirconium oxyacetate, yttrium chloride and aluminum nitrate as starting materials. The coprecipitated powders were characterized by XRD, TG-DTA, FT-IR and SEM. The sintering properties of zirconia-alumina composites prepared by 2YSZ and 8YSZ powders containing various Al2O3 contents were also investigated. With increasing the yttria stabilizer contents, the amount of exothermic heat for zirconia crystallization decreased. And it was confirmed that the crystallizing temperature of coprecipitated zirconia powders increased and the crystallization process occurred in a wide temperature range, as Al2O3 content increased in 8YSZ.

  • PDF

Tribological Behaviour of Plasma Sprayed Ceramic Coatings for the Application to the Cylinder Linerin Engines (플라즈마용사 세라믹코팅의 실린더라이너 적용위한 마찰 마모특성 연구)

  • 안효석;김장엽;임대순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.89-102
    • /
    • 1993
  • In this experimental investigation, various plasma-sprayed zirconia contained coatings and a kind of alumina-zirconia coating were studied to gain a better understanding of their tribological behaviour under dry contact condition in a reciprocating motion at temperature of 200℃. Particular attention was made for finding appropriate coatings in cylinder liner/piston ring application with an emphasis on the antiwear property. In order to identify the wear mechanism, SEM(Scanning Electron Microscope), optical micrograph, and roughness tester were used. Alumina-zirconia and 8% yttria-zirconia were found to be most appropriate for the application to the cylinder liner/piston ring and, especially, alumina-zirconia exhibited highest wear-resistance and also showed good friction characteristics. Wear mechanisms of ceramic coatings identified.

  • PDF

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

Mechanical and optical properties of alumina/zirconia-glass dental crown composites (인공치관용 알루미나/지르코니아-유리 복합체의 기계적 및 광학적 특성)

  • 이득용;장주웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.99-104
    • /
    • 2003
  • Alumina/zirconia-glass composites prepared by melt-infiltration were investigated to evaluate the influence of zirconia addition on mechanical and optical properties of the composites and glass penetration kinetics. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction In pore size as the amount of zirconia rose. The zirconia addition increased lightness ($L^*$) but reduced K, transmittance and color sharpness ($C^*$) It can be concluded that the zirconia addition was not effective to the mechanical properties of the composites due to the increase in porosity even though the toughness of the composites increased when zirconia was added up to 15 wt%.

The Effect of Seeding on Preparation of $ZrO_2/Al_2O_3$ Composite by Sol-Gel Method (Sol-Gel법에 의한 $ZrO_2/Al_2O_3$ 복합체의 제조에 미치느 Seeding 효과)

  • 김선욱;주치홍;장윤식;손영국;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.571-577
    • /
    • 1993
  • The effect of $\alpha$-Al2O3 seeding on preparation of zirconia/alumina gel fragment prepared by sol-gel processing was characterized through XRD, SEM, TG/DTA and IR analysis. Aluminum isopropoxide and zirconium butoxide were used as starting materials. $\alpha$-Al2O3 seeding restrained grain growth of alumina and zirconia, and decreased tetragonal to monoclinic phase transformation of zirconia on cooling. Therefore, fine zirconia-toughened alumina composite having the relative sintered density of about 98% of theoretical at 140$0^{\circ}C$ for 2h could be obtained.

  • PDF

Effects of $\alpha-AI_2O_3$ Seeding on Phase Formation and Densification Characteristics of Alumina-Mullite-Zirconia Composites (Alumina-Zirconia-Mullite 복합체의 상생성 및 치밀화 특성에 미치는 $\alpha-AI_2O_3$ Seeding 효과)

  • 조성목;장현명
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1475-1482
    • /
    • 1994
  • Compositionally triphasic boehmite-silica-zirconia composite gels were prepared by a multiphasic sol-gel route. Phase-formation characteristics and densification behavior of the gel compacts were examined with and without $\alpha$-Al2O3 seeding. In the unseeded triphasic gels, both $\alpha$-Al2O3 and mullite crystallize simultaneously at 130$0^{\circ}C$. On the other hand, the $\alpha$-Al2O3 seeding selectively induces the formation of corundum phase ($\alpha$-Al2O3) at a significantly lower temperature (~110$0^{\circ}C$) and facilitates an epitaxial growth of $\alpha$-Al2O3 between 1100~130$0^{\circ}C$. The densification of alumina-mullite-zirconia composite (derived from the triphasic gels) was also enhanced by the $\alpha$-Al2O3 seeding, and this was attributed to the delayed crystallization of mullite in the $\alpha$-Al2O3 seeded gel.

  • PDF

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Preparation of Al2O3-ZrO2 Composite Powders by the Use of mulsions : II. Emulsion-Hot Kerosene Drying Method (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : II. 에멀젼-가열석유 증발법)

  • 현상훈;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.284-292
    • /
    • 1988
  • Alumina-zirconia composite powders for the purpose of improving fracture toughness and thermal shock resistance of alumina were prepared by the emulsion-kerosene drying method. The average particle size of composite powders was less then 1 $\mu\textrm{m}$ and their shapes were spherical. It was shown that the average particle size of composite powders decreased with the concentration of metal-salt in solution and the amount of span 80 added when preparing emulsions. The structure of all zirconia in composite powders heat-treated at 1200$^{\circ}C$ was a tetragonal form at room temperature. This result implied that fine zirconia particles were homogeneously dispersed in the alumina matrix.

  • PDF