• Title/Summary/Keyword: zirconia implant

Search Result 156, Processing Time 0.025 seconds

Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects

  • Lim, Hyun-Chang;Jung, Ronald Ernst;Hammerle, Christoph Hans Franz;Kim, Myong Ji;Paeng, Kyeong-Won;Jung, Ui-Won;Thoma, Daniel Stefan
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Purpose: The purpose of the present study was to validate an experimental model for assessing tissue integration of titanium and zirconia implants with and without buccal dehiscence defects. Methods: In 3 dogs, 5 implants were randomly placed on both sides of the mandibles: 1) Z1: a zirconia implant (modified surface) within the bony housing, 2) Z2: a zirconia implant (standard surface) within the bony housing, 3) T: a titanium implant within the bony housing, 4) Z1_D: a Z1 implant placed with a buccal bone dehiscence defect (3 mm), and 5) T_D: a titanium implant placed with a buccal bone dehiscence defect (3 mm). The healing times were 2 weeks (one side of the mandible) and 6 weeks (the opposite side). Results: The dimensions of the peri-implant soft tissue varied depending on the implant and the healing time. The level of the mucosal margin was located more apically at 6 weeks than at 2 weeks in all groups, except group T. The presence of a buccal dehiscence defect did not result in a decrease in the overall soft tissue dimensions between 2 and 6 weeks ($4.80{\pm}1.31$ and 4.3 mm in group Z1_D, and $4.47{\pm}1.06$ and $4.5{\pm}1.37mm$ in group T_D, respectively). The bone-to-implant contact (BIC) values were highest in group Z1 at both time points ($34.15%{\pm}21.23%$ at 2 weeks, $84.08%{\pm}1.33%$ at 6 weeks). The buccal dehiscence defects in groups Z1_D and T_D showed no further bone loss at 6 weeks compared to 2 weeks. Conclusions: The modified surface of Z1 demonstrated higher BIC values than the surface of Z2. There were minimal differences in the mucosal margin between 2 and 6 weeks in the presence of a dehiscence defect. The present model can serve as a useful tool for studying peri-implant dehiscence defects at the hard and soft tissue levels.

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Factors affecting fracture of full contour monolithic zirconia dental prosthesis in laboratory process (구치부 심미수복, 풀지르코니아 크라운의 파절원인과 그 해결방안)

  • Lee, Soo Young
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.77-79
    • /
    • 2014
  • There are several factors affected fractures of full contour zirconia (FCZ) dental prosthesis in laboratory process. First, residual moisture can cause zirconia cracks. Complete dry is requisite before zirconia sintering to prevent zirconia cracks. Second, slow cooling rate is essential to prevent cracks during zirconia sintering process. Cracks in bridge pontic area, thick dental implant prosthesis can be prevented by slow cooling rate such as 3 degree Celsius per minute during zirconia sintering. Third, slow heating rate and slow cooling rate during staining and glazing procedure is necessary to inhibit thermal shock of sintered dental zirconia. Lower preheat temperature of porcelain furnace is recommended. Finally, using diamond disc to open embrasure can lead cracks.

Influence of kilovoltage- peak and the metal artifact reduction tool in cone-beam computed tomography on the detection of bone defects around titanium-zirconia and zirconia implants

  • Fontenele, Rocharles Cavalcante;Nascimento, Eduarda Helena Leandro;Imbelloni-Vasconcelos, Ana Catarina;Martins, Luciano Augusto Cano;Pontual, Andrea dos Anjos;Ramos-Perez, Flavia Maria Moraes;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.267-273
    • /
    • 2022
  • Purpose: The aim of this study was to assess the influence of kilovoltage- peak (kVp) and the metal artifact reduction (MAR) tool on the detection of buccal and lingual peri-implant dehiscence in the presence of titanium-zirconia (Ti-Zr) and zirconia (Zr) implants in cone-beam computed tomography (CBCT) images. Materials and Methods: Twenty implant sites were created in the posterior region of human mandibles, including control sites (without dehiscence) and experimental sites (with dehiscence). Individually, a Ti-Zr or Zr implant was placed in each implant site. CBCT scans were performed using a Picasso Trio device, with variation in the kVp setting (70 or 90 kVp) and whether the MAR tool was used. Three oral radiologists scored the detection of dehiscence using a 5-point scale. The area under the receiver operating characteristic (ROC) curve, sensitivity, and specificity were calculated and compared by multi-way analysis of variance (α=0.05). Results: The kVp, cortical plate involved (buccal or lingual cortices), and MAR did not influence any diagnostic values (P>0.05). The material of the implant did not influence the ROC curve values(P>0.05). In contrast, the sensitivity and specificity were statistically significantly influenced by the implant material (P<0.05) with Zr implants showing higher sensitivity values and lower specificity values than Ti-Zr implants. Conclusion: The detection of peri-implant dehiscence was not influenced by kVp, use of the MAR tool, or the cortical plate. Greater sensitivity and lower specificity were shown for the detection of peri-implant dehiscence in the presence of a Zr implant.

Influence of zirconia and lithium disilicate tooth- or implant-supported crowns on wear of antagonistic and adjacent teeth

  • Rosentritt, Martin;Schumann, Frederik;Krifka, Stephanie;Preis, Verena
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • PURPOSE. To investigate the influence of crown material (lithium-disilicate, 3Y-TZP zirconia) and abutment type (rigid implant, resin tooth with artificial periodontium) on wear performance of their antagonist teeth and adjacent teeth. MATERIALS AND METHODS. A mandibular left first molar (#36) with adjacent human teeth (mandibular left second premolar: #35, mandibular left second molar: #37) and antagonistic human teeth (maxillary left second premolar: #25, maxillary left first molar: #26, maxillary left second molar: #27) was prepared simulating a section of the jaw. Samples were made with extracted human molars (Reference), crowned implants (Implant), or crowned resin tooth analogues (Tooth). Crowns (tooth #36; n = 16/material) were milled from lithium-disilicate (Li, IPS e.max CAD) or 3Y-TZP zirconia (Zr, IPS e.max ZirCAD, both Ivoclar Vivadent). Thermal cycling and mechanical loading (TCML) in the chewing simulator were applied simulating 15 years of clinical service. Wear traces were analyzed (frequency [n], depth [㎛]) and evaluated using scanning electron pictures. Wear results were compared by one-way-ANOVA and post-hoc-Bonferroni (α = 0.05). RESULTS. After TCML, no visible wear traces were found on Zr. Li showed more wear traces (n = 30-31) than the reference (n = 21). Antagonistic teeth #26 showed more wear traces in contact to both ceramics (n = 27-29) than to the reference (n = 21). Strong wear traces (> 350 ㎛) on antagonists and their adjacent teeth were found only in crowned groups. Abutment type influenced number and depth of wear facets on the antagonistic and adjacent teeth. CONCLUSION. The clinically relevant model with human antagonistic and adjacent teeth allowed for a limited comparison of the wear situation. The total number of wear traces and strong wear on crowns, antagonistic and adjacent teeth were influenced by crown material.

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo;Pozzer, Leandro;Cavalieri-Pereira, Lucas;De Moraes, Paulo Hemerson;Olate, Sergio;De Albergaria Barbosa, Jose Ricardo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

Comparative Analysis between Zirconia Implant and Titanium Implant

  • Hwang, Ho-Jeong;Kim, Seong-Kyun;Lee, Joo-Hee;Heo, Seong-Joo;Koak, Jai-Young;Yoo, Soo-Yeon
    • Journal of Korean Dental Science
    • /
    • v.5 no.2
    • /
    • pp.48-53
    • /
    • 2012
  • Various ceramic implant systems made of yttria-stabilized tetragonal zirconia polycystal (Y-TZP) have become commercially available in recent years. A search of the literature was performed to assess the clinical success of dental Y-TZP implants and whether the osseointegration of Y-TZP is comparable to that of titanium, the standard implant material. No controlled clinical studies in humans regarding clinical outcomes or osseointegration could be identified. Clinical data were restricted to case studies and case series. Only 7 animal studies were found. Osseointegration was evaluated at 4 weeks to 24 months after placement in different animal models, sites and under different loading conditions. The mean bone-implant contact percentage was above 60% in almost all experimental groups. In studies that used titanium implants as a control, Y-TZP implants were comparable to or even better than titanium implants. Surface modifications may further improve initial bone healing and resistance to removal torque. Y-TZP implants may have the potential to become an alternative to titanium implants but cannot currently be recommended for routine clinical use, as no long-term clinical data are available.

Understanding and trends of esthetic treatment in prosthodontics : part 2. Zirconia (심미보철 치료의 경향과 이해 : part 2. 지르코니아)

  • Kang, Jung-In;Heo, Yu-Ri;Lee, Myeong-Seon;Son, Mee-Kyoung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.5
    • /
    • pp.617-622
    • /
    • 2014
  • With the explosive increase of esthetic demands by patients, many dental materials for the esthetic restoration have been introduced. Recently, zirconia based restorations are using for the cases of single crown, bridges, implant prostheses etc. Zirconia have superior mechanical properties and biocompatibility. Owing to the properties of high strength, zirconia has to be manufactured by CAD/CAM system. Dental CAD/CAM system is a futuristic treatment and technical system which makes it possible to produce the precision and uniform prosthesis and also standardize the treatments. This article introduces the characteristics of zirconia, fabrication procedure using CAD/CAM system and procedure for the cementation of zirconia based restoration.

Clinical outcome of double crown-retained implant overdentures with zirconia primary crowns

  • Rinke, Sven;Buergers, Ralf;Ziebolz, Dirk;Roediger, Matthias
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • PURPOSE. This retrospective study aims at the evaluation of implant-supported overdentures (IODs) supported by ceramo-galvanic double crowns (CGDCs: zirconia primary crowns + galvano-formed secondary crown). MATERIALS AND METHODS. In a private practice, 14 patients were restored with 18 IODs (mandible: 11, maxilla: 7) retained by CGDCs on 4 - 8 implants and annually evaluated for technical and/or biological failures/complications. RESULTS. One of the 86 inserted implants failed during the healing period (cumulative survival rate (CSR) implants: 98.8%). During the prosthetic functional period (mean: $5.9{\pm}2.2years$), 1 implant demonstrated an abutment fracture (CSR-abutments: 98.2%), and one case of peri-implantitis was detected. All IODs remained in function (CSR-denture: 100%). A total of 15 technical complications required interventions to maintain function (technical complication rate: 0.178 treatments/patients/year). CONCLUSION. Considering the small sample size, the use of CGDCs for the attachment of IODs is possible without an increased risk of technical complications. However, for a final evaluation, results from a larger cohort are required.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.