• Title/Summary/Keyword: zinc source materials

Search Result 62, Processing Time 0.031 seconds

$CO_2$ adsorption over zinc oxide impregnated NaZSM-5 synthesized using rice husk ash (왕겨회재를 이용하여 합성된 NaZSM-5의 zinc oxide 함침에 의한 이산화탄소 흡착)

  • Hemalatha, Pushparaj;Ganesh, Mani;Venkatachalam, Kandan;Peng, Mei-Mei;Lee, Sung-Yong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.327-331
    • /
    • 2011
  • Zinc oxide (5, 10 and 15 wt%) impregnated NaZSM-5 zeolite synthesized using rice husk ash as silica source was tested for $CO_2$ adsorption. The materials were characterized by XRD, SEM-EDS, $CO_2$-TPD and BET techniques. The heat of the reaction (${\Delta}$Hr) derived from DSC for ZnO(10%)/NaZSM-5 was found to be 495 Btu/lb and the maximum $CO_2$ adsorption capacity of ZnO(10%)/NaZSM-5 is 140 mg/g of sorbent. Extraction of silica from the agricultural waste, rice husk and its use in the zeolite synthesis is an added advantage in this study. Hence, from the study it is concluded that zinc oxide impregnated NaZSM-5 could be treated as novel material for $CO_2$ adsorption as they were found to be regenerable, selective and recyclable.

  • PDF

ZTO/Ag/ZTO 다층 투명 전극 및 이를 이용한 투명 트랜지스터 특성 연구

  • Choe, Yun-Yeong;Choe, Gwang-Hyeok;Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.61.1-61.1
    • /
    • 2011
  • 본 연구에서는 Zinc Tin Oxide (ZTO)/Ag/ZTO 다층 투명 전극을 제작하고 이를 비정질 ZTO (a-ZTO) 채널을 기반으로 한 TFT에 적용하여 투명 TFT의 전기적 특성을 확인하였다. 15${\times}$15 mm 크기의 ITO (gate)/Glass 기판상에 ALD법으로 투명 $Al_2O_3$절연층을 형성하고, RF sputtering법으로 50nm 두께의 a-ZTO 채널층을 형성하였다. 열처리를 위하여 Hot plate를 이용해 대기 중에서 $300^{\circ}C$의 온도로 20분간 열처리하여 채널 특성을 최적화 하였다. 이후 투명 Source/Drain으로 ZTO/Ag/ZTO 다층 투명 전극을 DC/RF sputtering법으로 패터닝하여 투명 TFT를 완성하였고, 평가를 위해 금속 (Mo)을 Source/Drain으로 사용한 TFT를 제작하여 그 성능을 비교하였다. ZTO/Ag/ZTO 다층 투명 전극은 Ag의 삽입으로 인하여 3.96ohm/square의 매우 낮은 면저항과 $3.24{\times}10-5ohm-cm$의 비저항을 나타내었으며, Antireflection 효과에 의해 가시광선 영역 (400~600 nm)에서 86.29%의 투과율을 나타내었다. ZTO/Ag/ZTO 다층 투명 전극 기반 투명 TFT는 $6.80cm^2/V-s$의 이동도와 $8.2{\times}10^6$$I_{ON}/I_{OFF}$비를 나타내어 금속 Source/Drain 전극에 준하는 특성을 나타내었다. 뿐만 아니라 전체 소자의 투과도 또한 ~73.26% 수준을 나타내어 투명 TFT용 Source/Drain 전극으로서 ZTO/Ag/ZTO 다층 투명 전극의 가능성을 확인하였다.

  • PDF

Improvement on the Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Amorphous Oxide Multilayer Source/Drain Electrodes

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.143-145
    • /
    • 2016
  • In order to find suitable source and drain (S/D) electrodes for amorphous InGaZnO thin film transistors (a-IGZO TFTs), the specific contact resistance of interface between the channel layers and various S/D electrodes, such as Ti/Au, a-IZO and multilayer of a-IGZO/Ag/a-IGZO, was investigated using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes had good performance and low contact resistance due to the homo-junction with channel layer. The stability was measured with different electrodes by a positive bias stress test. The result shows the a-IGZO TFTs with a-IGZO/Ag/a-IGZO electrodes were more stable than other devices.

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPc)/$C_{60}$ devices (Zinc phthalocyanine(ZnPc)/$C_(60)$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Lee, Won-Jae;Shin, Hoon-Kyu;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1712-1714
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine($C_{60}$) as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source.

  • PDF

Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • The etching characteristics of indium zinc oxide (IZO) in $Cl_2/Ar$ plasma were investigated, including the etch rate and selectivity of IZO. The IZO etch rate showed non-monotonic behavior with increasing $Cl_2$ fraction in the $Cl_2/Ar$ plasma, and with increasing source power, bias power, and process pressure. In the $Cl_2/Ar$ (75:25%) gas mixture, a maximum IZO etch rate of 87.6 nm/min and etch selectivity of 1.09 for IZO to $SiO_2$ were obtained. Owing to the relatively low volatility of the by-products formation, ion bombardment was required, in addition to physical sputtering, to obtain high IZO etch rates. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. These data suggested that the IZO etch mechanism was ion-enhanced chemical etching.

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices (Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Oh, Hyun-Seok;Jang, Kyung-Uk;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

Properties of Photovoltaic Cell using ZnPc/C60 Double Layer Devices

  • Lee, Ho-Sik;Seo, Dae-Shik;Lee, Won-Jae;Jang, Kyung-Uk;Kim, Tae-Wan;Lee, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.124-127
    • /
    • 2005
  • It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene$(C_60)$ as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was $2.65\%$ at illumination intensity $100\;mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.

Mercury Emission Control in Japan

  • Takiguchi, Hiroaki;Tamura, Tomonori
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • The Minamata Convention on Mercury entered into force on August 16, 2017. It requires Parties to the Convention to control and, where feasible, reduce mercury emissions from the listed sources. To implement the Convention, Japan amended the Air Pollution Control Law and added clauses that force operators to control their mercury emissions below emission limit values (ELVs). The ELVs have been established separately for new and existing sources, targeting the source categories listed in the Convention: coal-fired boilers, smelting and roasting processes used in the production of non-ferrous metals (lead, zinc, copper and industrial gold), waste incineration facilities and cement clinker production facilities. The factors used to establish the ELVs include the present state of mercury emissions from the targeted categories as well as the mercury content in fuels and materials, best available techniques (BATs) and best environmental practices (BEPs) to control and reduce mercury emissions and ELVs or equivalent standards to control mercury emissions in other countries. In this regard, extensive data on mercury emissions from flue gas and the mercury content of fuels and materials were collected and analyzed. The established ELVs range from $8{\mu}g/Nm^3$ for new coal-fired boilers to $400{\mu}g/Nm^3$ for existing secondary smelting processes used in the production of copper, lead and zinc. This paper illustrates the ELVs for the targeted source categories, explaining the rationales and approaches used to set the values. The amended Law is to be enforced on April 1, 2018. From future perspectives, checks of the material flow of mercury, following up on the state of compliance, review of the ELVs and of the measurement and monitoring methods have been noted as important issues.