• Title/Summary/Keyword: zero-error

Search Result 754, Processing Time 0.031 seconds

Novel Model Following Sliding Mode Controller with Virtual State (새로운 모델 추종 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ok, In-Jo;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2669-2671
    • /
    • 2000
  • In this paper, a new model error following sliding mode control is considered with a novel sliding surface for the error. This novel sliding surface has nominal dynamics of an original state of the error system and makes it possible that the Sliding Mode Control(SMC) technique for the error of the model following is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original error system. The reaching phase is removed by using an initial virtual state which makes the initial error state sliding function equal to zero.

  • PDF

A Study on Usefulness Verification Technique of the Measurement System by the Difference Between Caculated and Experimental Values of Ratio Error/phase Annie Error in Current Transformer (전류변성기의 비오차와 위상각오차의 계산값과 실험값의 차에 의한 측정시스템 유용성 검증기술에 관한 연구)

  • 정재갑;권성원;이상화;박영태
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.213-217
    • /
    • 2004
  • A current transformer(CT) used for the estabilishment of high current national standard, has generally very small ratio error and phase angle error. Both the errors of CT depend critically on the external burden used. When both the ratio and phase angle errors at two different burdens including zero burden are known, those at any other burdens are calculated theoretically. The theoretical values are well consistent with the experimental results within the $82{\times}10$-6, implying the measurement system of CT in KRISS is well maintained.

Experimental Performance Evaluation of MIMO Underwater Acoustic Communication in Water Tank (수조에서 MIMO 수중음향통신의 실험적 성능 고찰)

  • Gwun, Byung-Chul;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1577-1582
    • /
    • 2013
  • In this paper, we have analyzed the performance of MIMO (Multi-Input Multi-Output) underwater acoustic communication by using the acquired data via the experiments in water tank. First of all, in the pursuit of this aim, we have measured the channel transfer characteristics at several transceiver locations. The transmitted signal was modulated by QPSK(Quadrature Phase Shit Keying) and the received signal was recovered through the detector that contains the zero forcing equalizer. A maximum 30~40 ms delay was appeared because of physically closed water tank environment that has the harsh multi-path transmission conditions. In result of experiment, even though the bit error rate showed comparatively large when $2{\times}2$ MIMO system with two transmitters and receivers was considered. However, we confirmed it has approximately 15% enhanced performance compared with SISO (Single-Input Single-Output) system.

Analysis of Empirical Constant of Eddy Viscosity by Zero- and One-Equation Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Kim, Tae Yun;Lee, Moon Ock;Hwang, Sung Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.323-333
    • /
    • 2014
  • In this paper, the wakes behind a square cylinder were simulated using two kinds of different turbulence models for the eddy viscosity concept such as the zero- and the one-equation model in which the former is the mixing length model and the latter is the k-equation model. For comparison between numerical and analytical solutions, we employed three skill assessments: the correlation coefficient(r) for the similarity of the wake shape, the error of maximum velocity difference(EMVD) for the accuracy of wake velocity and the ratio of drag coefficient(RDC) for the pressure distribution around the structure. On the basis of the numerical results, the feasibility of each model for wake simulation was discussed and a suitable value for the empirical constant was suggested in these turbulence models. The zero-equation model, known as the simplest turbulence model, overestimated the EMVD and its absolute mean error(AME) for r, EMVD and RDC was ranging from 20.3 % to 56.3 % for all test. But the AME by the one-equation model was ranging from 3.4 % to 19.9 %. The predicted values of the one-equation model substantially agreed with the analytical solutions at the empirical mixing length scale $L=0.6b_{1/2}$ with the AME of 3.4 %. Therefore it was concluded that the one-equation model was suitable for the wake simulation behind a square cylinder when the empirical constant for eddy viscosity would be properly chosen.

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Non-Robust and Robust Regularized Zero-Forcing Interference Alignment Methods for Two-Cell MIMO Interfering Broadcast (두 셀 다중 안테나 하향링크 간섭 채널에서 비강인한/강인한 정칙화된 제로포싱 간섭 정렬 방법)

  • Shin, Joonwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.560-570
    • /
    • 2013
  • In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Adaptive Phase-Locked Loop for Process Control System

  • Park, Jin-Bae;Shohei, Niwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.108.2-108
    • /
    • 2001
  • This paper presents the application of adaptive phase-locked loop (adaptive PLL) technique to control the process variable of the process control system. The adaptive algorithm is related to the error. When the error of the system is changed, the adaptive gain will be directly changed according to the error. If the value of the adaptive gain is large, the value of the error will be large. In this experiment, the reference input is 50% step input. The experimental result in controlling the first order lag process by the adaptive PLL shows that the response of the controlled system has no overshoot, short rise time, and zero steady-state error. The experimental result also shows that when the output disturbance enters to the process control system, the adaptive PLL can maintain the stability of the system and the effect of the output disturbance can also be fast rejected. The adaptive PLL has better performance ...

  • PDF

Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed (6자유도 운동재현용 베드의 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF

Analysis of focus error signals on land/groove recordable optical disks (랜드/그루브 기록 광디스크에 대한 포커스 에러 신호 분석)

  • 이용재;박병호;신현국
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.73-79
    • /
    • 1997
  • We analyzed the variation of the focus error signal with the effect of land and groove, wavefront error, and optical system parameter variation for the knife-edge and astigmatism methods on the Land/Groove recordable optical disc, using a numerical simulation method. We verified causes of the zero-cross-shift that took place by the effect of land and groove by analyzing the diffraction beam including defocus wavefront errors. We also found that the sensitivty of the focus error signal was reduced by the effect of land and groove in the astigmatism method, as in the analysis of the focus error signal with the each order of the diffraction beam.

  • PDF