두 셀 다중 안테나 하향링크 간섭 채널에서 비강인한/강인한 정칙화된 제로포싱 간섭 정렬 방법

신 준 우

Non-Robust and Robust Regularized Zero-Forcing Interference Alignment Methods for Two-Cell MIMO Interfering Broadcast Channels

Joonwoo Shin

요 약

본 논문에서는 셀 간 간섭과 셀 내 사용자 간 간섭이 공존하는 two-cell 다중 안테나 하향링크 간섭 채널에서 송수신기 설계 방법을 제안한다. 우선 셀 간 간섭과 셀 내 사용자 간 간섭을 다차원 subspace에 정렬하는 zero-forcing 간섭 정렬 방법을 일반화한다. 그리고 일반화한 zero-forcing 간섭 정렬 방법에서 구한 송수신기를 "regularizing" 하는 minimum weighted-mean-square-error 기반 regularized ZF-IA 방법을 제안한다. 기존 weighted-sum-rate-maximizing 송수신기 설계 방법에 비해 제안하는 방법은 weight 를 구하는 반복 연산 과정이 필요하지 않다. 그 결과 제안하는 방법은 비록 sum-rate 최대화하도록 설계되진 않았지만, 기존의 weighted-sum-rate maximizing 방법 보다 계산 복잡도 면에서 효율적이고 더 빠른 수렴 속도를 얻을 수 있다. 다 양한 분석과 실험을 통해 제안하는 regularized ZF-IA 방법의 우수성을 확인하였다. 구체적으로 반복 연산 수가 작 은 경우, 제안하는 regularized ZF-IA 방법의 sum-rate 성능이 기존의 weighted-sum-rate maximizing 방법보다 SNR = 20 [dB] 에서 약 49.8 % 이상 나음을 확인할 수 있다. 더불어 채널 정보에 오차가 있는 경우 상당한 robustness를 제공하는 robust 송수신기 설계 방법도 제시한다.

Key Words : Interference Alignment, MIMO

ABSTRACT

In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.

주저자 : ETRI, joonoos@etri.re.kr, 정회원 논문번호 : KICS2013-04-177, 접수일자 : 2013년 4월 18일, 최종논문접수일자 : 2013년 7월 9일

Specifically, at small number of iteration and SNR = 20 [dB], the sum-rate performance of proposed regularized ZF-IA is 49.8 % better than that of the conventional weighted-sum-rate maximizing scheme. In addition, we propose a robust transceiver design method that provides significant robustness in the presence of in accurate channel state information.

I. Introduction

네트워크 다중 안테나 시스템 (Network multiple-input multiple-output; Network MIMO) 과 coordinated 다중 접속 점 송신 및 수신 시스템 CoMP) 과 같은 다중 (coordinated multi-point; 셀 간섭 하향링크 시스템은 기지국 간 협력을 통해 시스템 성능을 개선할 수 있다는 점에서 주목을 받 고 있다. 다중 셀 간섭 하향링크 시스템에 대한 practical한 scenario로 macro-pico 또는 네트워크와 셀룰라 같은 macro-femto heterogeneous 네트워크를 고려할 수 있다^[1]. 이러 한 heterogeneous 네트워크의 경우 dominant 간섭 이 나머지 인섭 셀에서의 간섭보다 훨씬 클 수 있 다. 이와 같은 scenario 는 two-cell interfering broadcast channel (IBC) 로 모사할 수 있다.

Two-cell IBC 시스템에 대한 성능 개선을 위해, 다중 안테나 공간 분할 방법과 기지국 간 협력을 통한 간섭 제어 방법을 결합하는 다양한 연구가 진 행되고 있다^[2]-6]. 참고 문헌 [2], [3] 는 다중 셀 multiple-input multiple-output (MIMO) IBC에서 iterative weighted-sum-rate-maximizing 송수신기 설계 방법을 제안했다. 참고 문헌 [4] 는 two-cell MIMO IBC 에서 degree-of-freedom (DoF) 의 lower bound를 analytic 하게 구하고 이를 achieve 할 수 있는 scheme 도 제안했다. 그러나 여기서 구 한 achievable DoF 는 참고 문헌 [7] 에서 구한 DoF의 outer-bound 보다 작다. DoF 를 개선하기 위해, 셀 간 간섭과 셀 내 사용자간 간섭을 정렬함 으로써 간섭 신호가 차지하는 dimension을 줄이는 간섭 정렬 (Interference Alignment; IA) 방법들이 제안되었다^[5,6]. 그러나 참고 문헌 [5] 의 간섭 정렬 방법은 셀 당 사용자가 두 명으로 제한된다. 반면 참고 문헌 [6] 에서 제안하는 zero-forcing IA (ZF-IA) 방법은 셀 당 K-사용자를 수용할 수 있도 록 제안되었다. 다중 안테나 간섭 채널에서 제안된 최초의 다중 안테나 간섭 정렬 방법^[7] 은 비록 DoF 를 achieve 하기는 하지만 유한한 신호 대 잡음 비 (signal-to-noise ratio; SNR) 환경에서는 sub-optimal 하다. 간섭 채널에서 간섭 정렬 방법의 sub-optimality를 감안할 때, 유한한 신호 대 잡음 비 환경에서 ZF-IA 방법이 IBC 에서 sub-optimal 할 것임을 예상할 수 있다.

이를 고려해 본 논문에서는 two-cell MIMO IBC 에 대한 ZF-IA 기반의 새로운 간섭 정렬 방법을 제안한다. 우선 참고 문헌 [6] 의 ZF-IA 방법을 각 communication link 별로 single-stream 전송 구조 에서 multiple-stream 전송 구조로 일반화한다. 그리 고 유한한 신호 대 잡음 비 환경에서 sum-rate 성 능을 개선하기 위해 weighted mean-squared-error (WMSE) 기반으로 ZF-IA 방법을 "regularizing" 하 는 방법을 제안한다. 모의 실험과 분석을 통해, 제 방법이 안하는 **ZF-IA** 실제로 regularized generalized ZF-IA 방법의 성능을 개선하고 송수신 기를 계산하기 위한 반복 연산 횟수가 제한되는 경 우 기존의 weighted sum-rate-maximizing 방법보다 좋은 성능을 보임을 확인할 수 있다. 또한 채널 정 보가 부정확한 경우에도 상당한 robustness를 보일 수 있는 robust regularized ZF-IA 설계 방법도 제 안한다.

본 논문의 수식 표현은 다음과 같다. 굵은 대문 자와 소문자는 각각 행렬과 벡터를 의미한다. 임의 의 행렬 X 에 대해 X^{*}, X^H, Tr{X}, det{X},그리고 SVD{X} 는 각각 conjugate, Hermitian transpose, trace, determinant, 그리고 singular value decomposition을 의미한다. I_n 은 크기 $n \times n$ 의 identity 행렬을 의미한다.

I. System model

Two-cell MIMO IBC 는 그림 1 과 같다. M개 송신 안테나를 갖는 m 번째 기지국 B_m 은

$$\mathbf{y}^{[m,k]} = \mathbf{H}_{m}^{[m,k]} \mathbf{T}^{[m,k]} \mathbf{s}^{[m,k]} + \mathbf{H}_{m}^{[m,k]} \sum_{i \neq k}^{K} \mathbf{T}^{[m,i]} \mathbf{s}^{[m,i]}$$
$$+ \mathbf{H}_{\overline{m}}^{[m,k]} \sum_{i=1}^{K} \mathbf{T}^{[\overline{m},i]} \mathbf{s}^{[\overline{m},i]} + \mathbf{n}^{[m,k]}$$

(1)

해당 셀 내의 N 개 수신 안테나를 갖는 K 사 용자 node $\{D_{mk}\}$ 를 지원한다. m 번째 셀의 k번째 사용자 node D_{mk} 에 전달된 신호를 $\mathbf{y}^{[m,k]}$ $(m \in \{1,2\}, k \in \{1 \sim K\})$ 라 할 때, two-cell MIMO IBC 시스템은 다음 식과 같이 표현할 수 있다.

여기서 $\mathbf{T}^{[m,k]}$ 는 D_{mk} 에 송신할 신호에 대 한 전치행렬, $\mathbf{s}^{[m,k]} \in \mathbb{C}^{L_s \times 1}$ 은 D_{mk} 로 전송할 신호 벡터를 의미한다. $\mathbf{n}^{[m,k]}$ 는 $CN(0,\sigma_n^2)$ 의 통계적 특성을 갖는 D_{mk} 에서의 잡음이다.

그림 1. Two-cell MIMO Interfering Broadcast Channels

그리고 $\mathbf{H}_{m}^{[m,k]}$ 는 \mathbf{B}_{m} 에서 \mathbf{D}_{mk} 로 향하는 채널 행렬을 의미한다. 또한 채널 행렬의 각 성분은 CN(0,1) 의 정규 분포를 따르고 independent and identically (i.i.d.) 분포함을 가정한다. 또한 $\mathbb{E}(\mathbf{s}^{[m,k]}\mathbf{s}^{[m,k]H}) = \mathbf{I}_{L}$ 로 가정한다. 그리고 _____ 1=2, 2=1 로 정의한다. B_m 에서의 전치 행렬 송신 전력 제약 ę 조건 $\sum_{k=1}^{K} \operatorname{Tr}(\mathbf{T}^{[m,k]}\mathbf{T}^{[m,k]H}) \leq P_{m}$ 을 만족한다. 여기 서 P_m 은 B_m 에서의 최대 송신 전력을 나타낸 다. 수신 필터 $\mathbf{U}^{[m,k]} \in \mathbb{C}^{M imes L_s}$ 를 이용해 D_{mk} 에서 추정한 수신 벡터는 다음과 같이 구한 다.

$$\tilde{\mathbf{s}}^{[m,k]} = \mathbf{U}^{[m,k]H} \mathbf{y}^{[m,k]}$$
⁽²⁾

III. Two-Cell ZF-IA Method

본 절에서는 two-cell MIMO IBC 시스템에서 generalized zero-forcing interference alignment 방 법을 정리한다. 우선 기존 zero-forcing interference alignment (ZF-IA) 방법에 대해 간략히 정리하고, 각 링크 별로 multiple-stream 을 전송할 수 있는 generalized ZF-IA 방법을 제시한다. 여기서 제시하 는 generalized ZF-IA 방법은 다음 장에서 제안할 regularized ZF-IA 방법의 토대가 된다.

3.1. Review on ZF-IA Method

기지국간 협력 없이 셀 당 $\frac{K}{K+1}$ degree of freedom (DoF-per-cell)¹⁾ 을 achieve 하기 위한 송 신 전치 행렬을 $\mathbf{T}^{[m,k]} = \mathbf{P}\mathbf{v}^{[m,k]}$ 로 나타낸다. 여기서 $\mathbf{P} \in \mathbb{C}^{M \times N_p}$ 는 N_p -stream을 M 차원 송신 안테나로 전송하도록 spreading 하는 역할을 하고 $(M \ge N_p)$, $\mathbf{v}^{[m,k]} \in \mathbb{C}^{N_p \times 1}$ 은 셀 내 사용 자간 간섭을 제거하는 역할을 한다. 참고 문헌 [6] 에 의하면 ZF-IA 방법은 대칭적 안테나 구조에 서 적용 가능하므로, 여기서는 대칭적 안테나 구조 M = N 인 경우에 초점을 둔다. 참고 문헌 [6] 에 서 제안하는 ZF-IA 는 각 사용자에게 single-stream 을 전송하고, 이를 D_{mk} 에서는 수신 필터 $\mathbf{u}^{[m,k]} \in \mathbb{C}^{M \times 1}$ 를 이용해 다음과 같이 신호를 추 정한다.

$$\widetilde{s}^{[m,k]} = \mathbf{u}^{[m,k]H} \mathbf{H}_{m}^{[m,k]} \mathbf{P} \mathbf{v}^{[m,k]} s^{[m,k]} + \mathbf{u}^{[m,k]H} \mathbf{H}_{m}^{[m,k]} \mathbf{P} \sum_{i\neq k}^{K} \mathbf{v}^{[m,i]} s^{[m,i]} + \mathbf{u}^{[m,k]H} \mathbf{H}_{\overline{m}}^{[m,k]} \mathbf{P} \sum_{i=1}^{K} \mathbf{v}^{[\overline{m},i]} s^{[\overline{m},i]} + \mathbf{u}^{[m,k]H} \mathbf{n}^{[m,k]}$$
(3)

수신 필터 $\mathbf{u}^{[m,k]}$ 는 셀 간 간섭 ((3) 의 세 번

참고문헌 [7] 의 DoF 정의와 비교해, DoF-per-cell은 DoF 를 total number of dimension으로 normalized 한 것을 의미한다.

째 항) 을 제거하기 위해서 $\mathbf{H}_{\mathbf{m}}^{[\mathbf{m},k]}\mathbf{P}$ 의 null space 에 존재하도록 한다. 즉, $\mathbf{u}^{[\mathbf{m},k]\mathbf{H}}\mathbf{H}_{\mathbf{m}}^{[\mathbf{m},k]}\mathbf{P} = \mathbf{0}^{\mathsf{T}}$ 를 만족한다. 이러한 수신 필터 $\{\mathbf{u}^{[\mathbf{m},k]}\}$ 가 존재하기 위해 spreading 행렬 \mathbf{P} 의 dimension은 $(K+1) \times K$ 가 되어야 한다. 즉 , M = K + 1, $N_p = K$ 이다. 수신 필터를 통해 셀 간 간섭을 제 거하고, 나머지 셀 내 사용자간 간섭은 송신부에서 channel inversion 방법으로 제거한다^[9]. 셀 간 간섭 을 제거하는 과정 $\mathbf{u}^{[\mathbf{m},k]\mathbf{H}}\mathbf{H}_{\mathbf{m}}^{[\mathbf{m},k]}\mathbf{P} = \mathbf{0}^{\mathsf{T}}$ 과 셀 내 사용자간 간섭을 제거하는 과정 $\mathbf{u}^{[\mathbf{m},k]\mathbf{H}}\mathbf{H}_{\mathbf{m}}^{[\mathbf{m},k]}\mathbf{P} \mathbf{v}^{[\mathbf{m},i]} = \mathbf{0}^{\mathsf{T}}$ 에서, 셀 간 간섭과 셀 내 사용자간 간섭은 수신 필터 $\mathbf{u}^{[\mathbf{m},k]}$ 의 null space 에 align 됨을 쉽게 확인할 수 있다.

3.2. Generalized ZF-IA Method

ZF-IA 방법은 $\frac{K}{K+1}$ DoF-per-cell 을 achieve 하지만, 각 사용자 node에 single-stream 만 전송 가능하다. 여기서는 각 사용자 node에 L_s -stream을 전송하는 generalized ZF-IA 송수신기 설계 방법을 제시한다 $(L_s > 1)$.송수신기 설계에 앞서 ZF-IA 구조로 L_s -stream전송을 feasible 하게 하는 다음의 lemma를 제시한다.

Lemma 1. (i) $N_p \ge KL_s$, (ii) $M \ge N_p + L_s$ 는 ZF-IA 방법으로 L_s stream 전송이 feasible한 if and only if 조건이다.

증명) $\rightarrow: N_p \ge KL_s$ 인 경우, KL_s -stream 을 전송할 수 있는 송신 전치 행렬 $\mathbf{V}^{[\mathrm{m},\mathrm{k}]} \in \mathbb{C}^{\mathrm{N}_p \times \mathrm{N}_p}$ 가 존재한다. $M \ge N_p + L_s$ 일 때, $\mathbf{H}_{\mathrm{m}}^{[\mathrm{m},\mathrm{k}]}\mathbf{P}$ 의 null space 에 수신 필터 $\mathbf{U}^{[\mathrm{m},\mathrm{k}]} \in \mathbb{C}^{M \times \mathrm{L}_s}$ 가 존재한다. 따라서 $N_p \ge KL_s$ 이고 $M \ge N_p + L_s$ 을 만족하는 경우, 각 수신 node는 셀 내 사용자가 간섭 없이 L_s -stream을 decode 할 수 있다.

←: Contraposition 을 통해 증명한다. $N_p < KL_s$ 일 때, $\operatorname{rank}(\mathbf{V}^{[\mathbf{m}]}) = \operatorname{N}_p < \operatorname{KL}_s$ 이므로, 송신기는 KL_s -stream을 동시에 전송할 수 없다. 따라서 L_s -stream을 수신하지 못하는 수신기 가 존재하게 된다. $N_p \ge KL_s$ 인 경우, 즉 KL_s -stream을 송신기에서 전송할 수 있는 경우라도, $M < N_p + L_s$ 일 때 rank $(\mathbf{U}^{[m,k]}) = \mathbf{M} - \mathbf{N}_p < \mathbf{L}_s$ 이므로, 수신기에 서 간섭이 없는 space가 부족해서 L_s -stream을 간 섭 없이 decode 할 수 없다. 따라서 $N_p < KL_s$

또는 $M < N_p + L_s$ 인 경우 L_s -stream을 전송

가능할 수 있는 ZF-IA가 feasible 하지 않다. Lemma 1 을 만족할 수 있도록 spreading 행렬 P 를 $K(L_s+1) \times KL_s$ 의 full rank 행렬 중 선 택하되, 송신 전력에 영향을 주지 않게 $P^{H}P = I_{N_p}$ 를 만족하는 P 를 선택한다. 이러한 P 를 적용할 경우, 수신 신호 (1) 은 다음과 같이 나 타낼 수 있다.

$$\mathbf{y}^{[m,k]} = \mathbf{H}_{m}^{[m,k]} \mathbf{P} \mathbf{V}^{[m,k]} \mathbf{s}^{[m,k]} + \mathbf{H}_{m}^{[m,k]} \mathbf{P} \sum_{i \neq k}^{K} \mathbf{V}^{[m,i]} \mathbf{s}^{[m,i]} + \mathbf{H}_{\bar{m}}^{[m,k]} \mathbf{P} \sum_{i=1}^{K} \mathbf{V}^{[\bar{m},i]} \mathbf{s}^{[\bar{m},i]} + \mathbf{n}^{[m,k]}$$
(4)

셀 간 간섭을 제거하기 위해, 수신 필터의 첫째 $\overline{\mathbf{U}}^{[m,k]} \in \mathbb{C}^{M \times L_s}$ 는 다음과 같이 $\mathbf{H}_m^{[m,k]} \mathbf{P}$ 의 null space에서 구한다.

$$\operatorname{SVD}\left(\mathbf{H}_{\overline{m}}^{[m,k]}\mathbf{P}\right) = [\widehat{\mathbf{U}}^{[m,k]}, \overline{\mathbf{U}}^{[m,k]}]\widehat{\mathbf{\Sigma}}^{[m,k]}\widehat{\mathbf{V}}^{[m,k]H}$$
(5)

그리고 송신기 B_m 은 셀 내 사용자간 간섭을 제거하기 위해 block diagonalization (BD) 방법을 적용한다^[10]. BD 방법에 의한 전치 행렬 $\overline{V}^{[m,k]}$ 는 다음과 같이 구한다.

$$\operatorname{SVD}\left(\overline{\mathbf{H}}_{\mathrm{C}}^{[m,k]}\right) = \mathbf{U}_{\mathrm{C}}^{[m]} \boldsymbol{\Sigma}_{\mathrm{C}}^{[m]} [\mathbf{V}_{\mathrm{C}}^{[m,k]}, \overline{\mathbf{V}}^{[m,k]}]^{H}$$
(6)

여기서 $\overline{\mathrm{H}}_{\mathrm{C}}^{[\mathrm{m},\mathrm{k}]}$ 그리고 $arGamma_{\mathrm{m}}^{[\mathrm{m},\mathrm{k}]}$ 는 다음과 같이 정의한다.

$$\overline{\mathbf{H}}_{\mathrm{C}}^{[m,k]} = [\mathbf{\Omega}_{m}^{[m,1]H}, \cdots, \mathbf{\Omega}_{m}^{[m,k-1]H}, \mathbf{\Omega}_{m}^{[m,k+1]H}, \cdots]^{H}$$
$$\mathbf{\Omega}_{m}^{[m,k]} = \overline{\mathbf{U}}^{[m,k]H} \mathbf{H}_{\overline{m}}^{[m,k]} \mathbf{P}$$

ZF-IA 방법으로 구한 최종 수신기와 송신기를 각각 $\mathbf{U}_{GZF-IA}^{[m,k]} = \overline{\mathbf{U}}^{[m,k]} \widetilde{\mathbf{U}}^{[m,k]}$, $\mathbf{T}_{GZF-IA}^{[m,k]} = \mathbf{P} \overline{\mathbf{V}}^{[m,k]} \widetilde{\mathbf{V}}^{[m,k]} \overline{\boldsymbol{\phi}}^{[m,k]\frac{1}{2}}$ 로 가정할 때, 추정 신호 벡터는 다음과 같이 나타낼 수 있다.

$$\tilde{\mathbf{s}}^{[m,k]} = \tilde{\mathbf{U}}^{[m,k]H} \mathbf{H}_{\text{eff}}^{[m,k]} \tilde{\mathbf{V}}^{[m,k]} \mathbf{\Phi}^{[m,k]\frac{1}{2}} \mathbf{s}^{[m,k]} + \tilde{\mathbf{n}}^{[m,k]}$$
(7)

여기서 effective 채널 $\mathbf{H}_{eff}^{[m,k]} \in \mathbb{C}^{L_s \times L_s}$ 과 effective 잡음 $\mathbf{\tilde{n}}^{[m,k]} \in \mathbb{C}^{L_s \times 1}$ 은 각각 $\mathbf{H}_{eff}^{[m,k]} = \overline{\mathbf{U}}^{[m,k]H} \mathbf{H}_m^{[m,k]} \mathbf{P} \overline{\mathbf{V}}^{[m,k]}$ 그리고 $\mathbf{\tilde{n}}^{[m,k]} = \mathbf{\tilde{U}}^{[m,k]H} \overline{\mathbf{U}}^{[m,k]} \mathbf{n}^{[m,k]}$ 로 정의한다. 나 머지 송수신 필터 $\mathbf{\tilde{V}}^{[m,k]}$ 와 $\mathbf{\tilde{U}}^{[m,k]}$ 는 다음과 같이 channel diagonalization 과정을 이용해 구한다.

$$SVD(\mathbf{H}_{eff}^{[m,k]}) = \tilde{\mathbf{U}}^{[m,k]} \boldsymbol{\Sigma}^{[m,k]} \tilde{\mathbf{V}}^{[m,k]H}$$
(8)

 $\widetilde{\mathbf{U}}^{[m,k]}$ 와 $\overline{\mathbf{U}}^{[m,k]}$ 는 orthonormal 행렬로 구성되 기 때문에 $\mathbb{E}(\widetilde{\mathbf{n}}^{[m,k]}\widetilde{\mathbf{n}}^{[m,k]H}) = \sigma_n^2 \mathbf{I}_{L_s}$ 로 나타낼 수 있다.

위의 송수신기를 적용한 후 D_{mk} 에서 전송 용 량은 다음과 같다.

$$\mathbf{R}_{ZF\text{-}LA}^{[m,k]} = \log\left\{\det\left(\mathbf{I}_{L_s} + \boldsymbol{\sigma}_n^{-2}\boldsymbol{\Sigma}^{[m,k]2}\boldsymbol{\Phi}^{[m,k]}\right)\right\}$$
(9)

위의 송수신기는 셀 간 간섭을 발생시키지 않으 므로, m 번째 셀에 대한 전송 용량 $\sum_{k} R_{2F-IA}^{[m,k]}$ 는 $B_{\overline{m}}$ 에서의 송신 전력과 무관하다. 따라서 다 음의 sum-rate-maximizing 전력 할당 문제:

$$\max_{\left\{\boldsymbol{\Phi}^{[m,k]}\right\}} \sum_{m=1}^{2} \sum_{k=1}^{K} \mathbb{R}_{ZF\text{-IA}}^{[m,k]}$$

subject to
$$\sum_{k=1}^{K} \operatorname{Tr}\left(\boldsymbol{\Phi}^{[m,k]}\right) \leq P_{m}, \forall m$$
(10)

(10) 은 다음의 individual-cell sum-rate-maximizing 문제로 바꿀 수 있다.

$$\max_{\left\{\boldsymbol{\Phi}^{[m,k]}\right\}} \sum_{k=1}^{K} \mathbf{R}_{\text{ZF-IA}}^{[m,k]}$$

subject to $\sum_{k=1}^{K} \operatorname{Tr}\left(\boldsymbol{\Phi}^{[m,k]}\right) \leq P_{m}$
(11)

(11) 의 최적화 해 $\{ \boldsymbol{\Phi}^{[m,k]} \}$ 는 water-filling 해 로 구할 수 있다. 여기서 전력 제약 $Tr(T_{GZF-IA}^{[m,k]}T_{GZF-IA}^{[m,k]H}) = Tr(\boldsymbol{\Phi}^{[m,k]})$ 는

 $\mathbf{P}^{\mathrm{H}}\mathbf{P} = \mathbf{I}_{\mathrm{N}_{\mathrm{p}}}$ 를 이용해 구할 수 있다. 이러한 송수신기 구조를 generalized ZF-IA (GZF-IA) 라고 명명하겠다. 제안하는 GZF-IA 방법은 ZF-IA 방법 과 마찬가지로 기지국간 협력 없이 $\frac{K}{K+1}$ DoF 를 achieve한다.

IV. Proposed Regularized ZF-IA Method

최초의 다중 안테나 간섭 정렬 방법^[7] 은 low-to-mid SNR 영역에서 sub-optimal 하다는 점을 감안할 때, 제안하는 GZF-IA 방법도 역시 sub-optimal 할 것임을 예상할 수 있다. 여기서는 GZF-IA 방법의 sum-rate 성능을 개선하는 방법으 로 GZF-IA 방법을 기반으로 regularizing 하는 regularized ZF-IA algorithm을 제안한다.

$$L = \sum_{m=1}^{2} \sum_{k=1}^{K} \operatorname{Tr} \left\{ \mathbf{\Lambda}^{[m,k]2} - \mathbf{U}^{[m,k]H} \mathbf{H}_{m}^{[m,k]} \mathbf{P} \mathbf{V}^{[m,k]H} \mathbf{\Lambda}^{[m,k]H} - \mathbf{\Lambda}^{[m,k]H} \mathbf{V}^{[m,k]H} \mathbf{P}^{H} \mathbf{H}_{m}^{[m,k]H} \mathbf{U}^{[m,k]} \right. \\ \left. + \sigma_{n}^{2} \mathbf{U}^{[m,k]} \mathbf{U}^{[m,k]H} + \sum_{n=1}^{2} \sum_{i=1}^{K} \mathbf{U}^{[m,k]H} \mathbf{H}_{n}^{[m,k]} \mathbf{P} \mathbf{V}^{[n,i]H} \mathbf{P}^{H} \mathbf{H}_{n}^{[m,k]H} \mathbf{U}^{[m,k]} \right\} + \sum_{m=1}^{2} \mu_{m} \left(\sum_{k=1}^{K} \operatorname{Tr} \left(\mathbf{V}^{[m,k]} \mathbf{V}^{[m,k]H} \right) - P_{m} \right)$$
(13)

제안하는 방법은 regularization을 수행하기 위해 다음의 weighted mean-squared-error (MSE) 를 최 소화 한다.

$$\min \sum_{m=1}^{2} \sum_{k=1}^{K} \mathbb{E}\left\{ \left| \mathbf{\Lambda}^{[m,k]} \mathbf{s}^{[m,k]} - \tilde{\mathbf{s}}^{[m,k]} \right|^{2} \right\}$$

subject to
$$\sum_{k=1}^{K} \operatorname{Tr}\left(\mathbf{T}^{[m,k]} \mathbf{T}^{[m,k]H} \right) \leq P_{m}, \forall m$$
(12)

여기서 $\Lambda^{[m,k]}$ 는 약한 sub-channel에 더 많은 전력이 할당되는 것을 방지함으로써 sum-rate 성능 을 개선하도록 도입된 항이다. 따라서, $\Lambda^{[m,k]}$ 는 D_{mk}에 대한 effective channel gain 행렬, $\Lambda^{[m,k]} = \mathbf{U}_{GZF-IA}^{[m,k]} \mathbf{H}_m^{[m,k]} \mathbf{T}_{GZF-IA}^{[m,k]} \mathbf{z}$ 정한다. 수식 (12) 에 대한 Lagrangian function 은 아래의 (13) 와 같이 정리할 수 있다. 수식 (13) 에서 $\{\mu_m\}$ 은 Lagrange multiplier 이고 B_m 에서의 송신 전력은 $\mathbf{P}^{\mathrm{H}}\mathbf{P} = \mathbf{I}_{\mathrm{N}_p}$ 을 이용해 $\mathrm{Tr}(\mathbf{T}^{[m,k]}\mathbf{T}^{[m,k]\mathrm{H}}) = \mathrm{Tr}(\mathbf{V}^{[m,k]}\mathbf{V}^{[m,k]\mathrm{H}})$ 과 같이 구한다.

송수신기 행렬 $\{\mathbf{V}^{[m,k]}\}$ 과 $\{\mathbf{U}^{[m,k]}\}$ 은 inter-related 하기 때문에, 송수신기를 동시에 최적 화 하기 어렵다. 따라서 여기서는 local optimal solution을 반복 연산을 통해 구하는 alternating optimization을 이용한다. 우선, 수신 필터 $\{\mathbf{U}^{[m,k]}\}$ 가 주어져 있다는 가정하에서 최적화 전 치 행렬을 설계한다. $\nabla_{\mathbf{V}^{[m,k]*}}L = 0$ 에서, D_{mk} 에 대한 전치 행렬은 다음과 같이 정리할 수 있다.

$$\mathbf{V}^{[m,k]} = \left(\sum_{n=1}^{2}\sum_{i=1}^{K}\mathbf{\Xi}_{m}^{[n,i]} + \boldsymbol{\mu}_{m}\mathbf{I}_{N_{p}}\right)^{-1}\mathbf{P}^{H}\mathbf{H}_{m}^{[m,k]H}\mathbf{U}^{[m,k]}\boldsymbol{\Lambda}^{[m,k]}$$
(14)

여기서

 $\boldsymbol{\varXi}_{m}^{[n,i]} = \mathbf{P}^{\mathrm{H}} \mathbf{H}_{\mathrm{m}}^{[n,i]\mathrm{H}} \mathbf{U}^{[n,i]\mathrm{H}} \mathbf{U}^{[n,i]\mathrm{H}} \mathbf{H}_{\mathrm{m}}^{[n,i]} \mathbf{P}$ 이다.

 B_m 의 전송 전력 $\sum_{k=1}^{K} Tr(\mathbf{V}^{[m,k]}\mathbf{V}^{[m,k]H})$ 은

 μ_m 에 대해 단조 감소 함수이므로, 1-D numerical search 방법인 bisection method 를 이용해 전력 조 건을 만족하는 μ_m 을 쉽게 구할 수 있다^[11]. 수신 필터 $\{\mathbf{U}^{[m,k]}\}$ 또한 같은 방식으로 전치 행렬 $\{\mathbf{V}^{[m,k]}\}$ 가 주어졌다는 전제하에서 구한다. D_{mk} 에 대한 최적 수신 필터는 $\nabla_{\mathbf{U}^{[m,k]*}}L = 0$ 에 서 다음과 같이 구할 수 있다.

$$\mathbf{U}^{[m,k]} = \left(\sum_{n=1}^{2}\sum_{i=1}^{K} \boldsymbol{\Psi}^{[m,k]}_{[n,i]} + \boldsymbol{\sigma}_{n}^{2} \mathbf{I}_{M}\right)^{-1} \mathbf{H}^{[m,k]H}_{m} \mathbf{P} \mathbf{V}^{[m,k]} \mathbf{\Lambda}^{[m,k]H}$$
(15)

여기서 $\Psi_{[n,i]}^{[m,k]} = H_n^{[m,k]} P V^{[n,i]} V^{[n,i]H} P^H H_n^{[m,k]H} 를 의$ 미한다. 수식 (14) 과 (15) 은 inter-dependent 하므로, 아래의 Algorithm 1을 통해 최적화 송수신기를구할 수 있다.

Algorithm 1
1. $\mathbf{U}^{[m,k]} = \mathbf{U}^{[m,k]}_{GZF-IA}$ 로 초기화 하고,
MSE weight $oldsymbol{\Lambda}^{[m,k]}, orall m,k$ 를 구한다.
2. $\left\{ m{V}^{[m,k]} ight\}$ 를 수학식 (14) 을 이용해 구한
다.
3. $\left\{ {{f U}^{\left[{m,k} ight]}} ight\}$ 를 수학식 (15) 을 이용해 구한
다.
4. 상기 2과정으로 복귀해 반복한다. 만약
MSE 가 수렴하면 연산을 멈춘다.

Algorithm 1 은 적어도 local minimum으로 수렴 한다. 비록 제안하는 regularized ZF-IA algorithm의 MSE weights $\{\Lambda^{[m,k]}\}$ 가 sum-rate관점에서 최적 화 값은 아니지만, 높은 SNR 영역에서 거의 최적 해에 가까운 GZF-IA 방법으로부터 비반복적 연산 을 통해 구할 수 있다. 이 때문에 뒤의 실험 결과 에서 확인할 수 있듯이 regularized ZF-IA 방법은 작은 수의 반복 연산으로도 좋은 성능을 얻는다.

V. Robust Regularized ZF-IA Method

시스템을 실제 구현하면 채널 추정 오류로 인해 실제 채널 $\{\mathbf{H}_n^{[m,k]}\}$ 과 추정 채널 $\{\mathbf{\hat{H}}_n^{[m,k]}\}$ 간 오차를 피할 수 없다. 여기서는 이러한 채널 추정 오류로 인한 성능 저하를 경감할 수 있는 robust 송 수신기 설계 방법을 제안한다. 이를 위해 실제 채널 $\left\{\mathbf{H}_{n}^{[m,k]}\right\}$ 과 추정 채널 $\left\{\widehat{\mathbf{H}}_{n}^{[m,k]}\right\}$ 과의 관계는 $\mathbf{H}_{n}^{[m,k]} = \widehat{\mathbf{H}}_{n}^{[m,k]} + \mathbf{E}_{n}^{[m,k]}$ 로 가정한다. $\mathbf{E}_{n}^{[m,k]}$ 의 각 성분은 i.i.d. 복소 가우시안 확률 변수로 정 규 분포 $CN(0,\sigma_{\epsilon}^{2})$ 을 따른다 가정한다. 이 때, 수신 신호는 다음과 같이 나타낼 수 있다.

$$\hat{\mathbf{y}}^{[m,k]} = \left(\hat{\mathbf{H}}_{m}^{[m,k]} + \mathbf{E}_{m}^{[m,k]}\right) \hat{\mathbf{T}}^{[m,k]} \mathbf{s}^{[m,k]} + \left(\hat{\mathbf{H}}_{m}^{[m,k]} + \mathbf{E}_{m}^{[m,k]}\right) \sum_{i\neq k}^{K} \hat{\mathbf{T}}^{[m,i]} \mathbf{s}^{[m,i]} + \left(\hat{\mathbf{H}}_{\overline{m}}^{[m,k]} + \mathbf{E}_{\overline{m}}^{[m,k]}\right) \sum_{i=1}^{K} \hat{\mathbf{T}}^{\{\overline{m},i\}} \mathbf{s}^{[\overline{m},i]} + \mathbf{n}^{[m,k]}$$
(16)

여기서 $\hat{\mathbf{T}}^{[m,k]} = \mathbf{P} \hat{\mathbf{V}}^{[m,k]}$ 를 의미하고, $\hat{\mathbf{V}}^{[m,k]} \leftarrow \{\mathbf{E}_n^{[m,k]}\}$ 에 대한 사전 정보 없이, 추 정 채널 $\{\hat{\mathbf{H}}_n^{[m,k]}\}$ 을 기반으로 구한다. 여기서는 실제 채널과 추정 채널 간 오차로 인한 영향을 줄 이기 위해 $\{\mathbf{E}_n^{[m,k]}\}$ 에 대한 평균을 취한 구한 최 적화 문제를 푼다.

5.1. Robust GZF-IA Method

정확한 채널 정보가 주어지는 4 장의 설계 방법 과동일하게 추정 채널 $\{\hat{\mathbf{H}}_n^{[m,k]}\}$ 을 기반으로 할 때, 셀 간 간섭을 제거하기 위해 수신 필터의 첫 째 항 $\widehat{\mathbf{U}}^{[m,k]}$ 은 다음과 같이 $\hat{\mathbf{H}}_{\overline{m}}^{[m,k]}\mathbf{P}$ 의 null space로부터 구한다.

$$\operatorname{SVD}\left(\hat{\mathbf{H}}_{\overline{m}}^{[m,k]}\mathbf{P}\right) = [\hat{\overline{\mathbf{U}}}^{[m,k]}, \hat{\overline{\mathbf{U}}}^{[m,k]}]\hat{\widehat{\mathbf{\Sigma}}}^{[m,k]}\hat{\widehat{\mathbf{V}}}^{[m,k]H}$$
(17)

m 번째 셀의 기지국 B_m 에서는 셀 내 사용 자간 간섭을 제거하기 위해 전치 행렬의 첫째 항 $\widehat{\nabla}^{[m,k]}$ 을 다음과 같이 BD 방법을 적용해 구한다.

$$\operatorname{SVD}\left(\hat{\mathbf{H}}_{\mathrm{C}}^{[m,k]}\right) = \hat{\mathbf{U}}_{\mathrm{C}}^{[m]} \hat{\boldsymbol{\Sigma}}_{\mathrm{C}}^{[m]} [\hat{\mathbf{V}}_{\mathrm{C}}^{[m,k]}, \hat{\overline{\mathbf{V}}}^{[m,k]}]^{H}$$
(18)

여기서 $\widehat{\mathbf{H}}_{ ext{C}}^{[ext{m,k}]}$ 과 $\widehat{oldsymbol{\varOmega}}_{ ext{m}}^{[ext{m,k}]}$ 는 다음과 같이 정 의한다.

$$\hat{\mathbf{H}}_{\mathrm{C}}^{[m,k]} = [\hat{\mathbf{\Omega}}_{m}^{[m,1]H}, \cdots, \hat{\mathbf{\Omega}}_{m}^{[m,k-1]H}, \hat{\mathbf{\Omega}}_{m}^{[m,k+1]H}, \cdots]^{H}$$
$$\hat{\mathbf{\Omega}}_{m}^{[m,k]} = \hat{\overline{\mathbf{U}}}^{[m,k]H} \hat{\mathbf{H}}_{\overline{m}}^{[m,k]} \mathbf{P}$$

RobustGZF-IA송수신기를각각 $\hat{\mathbf{T}}_{GZF-IA}^{[m,k]} = P \hat{\boldsymbol{\nabla}}^{[m,k]} \hat{\boldsymbol{\nabla}}^{[m,k]} \hat{\boldsymbol{\sigma}}^{[m,k]\frac{1}{2}},$ $\hat{\mathbf{U}}_{GZF-IA}^{[m,k]} = \hat{\mathbf{U}}^{[m,k]} \hat{\boldsymbol{U}}^{[m,k]}$ 라고 가정할 때, 추정신호 벡터는 다음과 같이 나타낼 수 있다.

$$\hat{\mathbf{s}}^{[m,k]} = \hat{\tilde{\mathbf{U}}}^{[m,k]H} \hat{\overline{\mathbf{U}}}^{[m,k]H} \hat{\mathbf{y}}^{[m,k]}$$
(19)

여기에 SVD $(\hat{\mathbf{U}}^{[\mathbf{m},\mathbf{k}]\mathbf{H}}\hat{\mathbf{H}}_{\mathbf{m}}^{[\mathbf{m},\mathbf{k}]}\mathbf{P}\hat{\mathbf{V}}^{[\mathbf{m},\mathbf{k}]})=\hat{\mathbf{U}}^{[\mathbf{m},\mathbf{k}]}\hat{\boldsymbol{\Sigma}}^{[\mathbf{m},\mathbf{k}]}\hat{\mathbf{V}}^{[\mathbf{m},\mathbf{k}]\mathbf{H}}$ 임 을 이용하면, 수식 (19)는 다음과 같이 정리할 수 있다.

$$\hat{\mathbf{s}}^{[m,k]} = \hat{\boldsymbol{\Sigma}}^{[m,k]} \hat{\boldsymbol{\Phi}}^{[m,k]\frac{1}{2}} \mathbf{s}^{[m,k]} + \hat{\tilde{\mathbf{U}}}^{[m,k]H} \hat{\overline{\mathbf{U}}}^{[m,k]H} \hat{\mathbf{E}}^{[m,k]}$$
$$+ \hat{\tilde{\mathbf{U}}}^{[m,k]H} \hat{\overline{\mathbf{U}}}^{[m,k]H} \mathbf{n}^{[m,k]}$$
(20)

여기처
$$\hat{\mathbf{E}}^{[m,k]}$$
는 다음과 같이 나타낼 수 있다.
 $\hat{\mathbf{E}}^{[m,k]} = \mathbf{E}_{m}^{[m,k]} \hat{\mathbf{V}}^{[m,k]} \hat{\mathbf{\Phi}}^{[m,k]\frac{1}{2}} \mathbf{s}^{[m,k]} + \mathbf{E}_{m}^{[m,k]} \sum_{i\neq k}^{K} \mathbf{P} \hat{\overline{\mathbf{V}}}^{[m,i]} \hat{\mathbf{\Phi}}^{[m,i]\frac{1}{2}} \mathbf{s}^{[m,i]}$

$$+ \mathbf{E}_{\overline{m}}^{[m,k]} \sum_{i=k}^{K} \mathbf{P} \hat{\overline{\mathbf{V}}}^{[\overline{m},i]} \hat{\mathbf{V}}^{[\overline{m},i]} \hat{\mathbf{\Phi}}^{[\overline{m},i]\frac{1}{2}} \mathbf{s}^{[\overline{m},i]}$$

(21)

앞의 수식 (20) 을 토대로 D_{mk} 에 대한 전송률 은 $\mathbb{E}(\mathbf{E}_n^{[m,k]}\mathbf{E}_n^{[m,k]H}) = \sigma_{\epsilon}^2 \mathbf{I}_M$ 임을 이용해 다음 과 같이 정리할 수 있다.

$$\hat{\mathbf{R}}_{\text{ZF-IA}}^{[m,k]} = \log \det \left(\mathbf{I}_{L_s} + \left(\left(P_m + P_{\bar{m}} \right) \sigma_{\varepsilon}^2 + \sigma_n^2 \right)^{-1} \hat{\boldsymbol{\Sigma}}^{[m,k]} \hat{\boldsymbol{\Phi}}^{[m,k]} \hat{\boldsymbol{\Sigma}}^{[m,k]} \right)$$
(22)

$$\hat{L} = \sum_{m=1}^{2} \sum_{k=1}^{K} \operatorname{Tr} \left\{ \hat{\mathbf{A}}^{[m,k]2} - \hat{\mathbf{U}}^{[m,k]H} \hat{\mathbf{H}}_{m}^{[m,k]} \mathbf{P} \hat{\mathbf{V}}^{[m,k]} \hat{\mathbf{A}}^{[m,k]H} - \hat{\mathbf{A}}^{[m,k]H} \hat{\mathbf{V}}^{[m,k]H} \mathbf{P}^{H} \hat{\mathbf{H}}_{m}^{[m,k]H} \hat{\mathbf{U}}^{[m,k]H} \hat{\mathbf{U}}^{[m,k]} + \sigma_{n}^{2} \hat{\mathbf{U}}^{[m,k]} \hat{\mathbf{U}}^{[m,k]H} \right. \\ \left. + \sum_{n=1}^{2} \sum_{i=1}^{K} \hat{\mathbf{U}}^{[m,k]H} \left(\hat{\mathbf{H}}_{n}^{[m,k]} + \mathbf{E}_{n}^{[m,k]} \right) \mathbf{P} \hat{\mathbf{V}}^{[n,i]} \hat{\mathbf{V}}^{[n,i]H} \mathbf{P}^{H} \left(\hat{\mathbf{H}}_{n}^{[m,k]} + \mathbf{E}_{n}^{[m,k]} \right)^{H} \hat{\mathbf{U}}^{[m,k]} \right\} + \sum_{m=1}^{2} \hat{\mu}_{m} \left(\sum_{k=1}^{K} \operatorname{Tr} \left(\hat{\mathbf{V}}^{[m,k]H} \hat{\mathbf{V}}^{[m,k]H} \right) - P_{m} \right)$$

$$(25)$$

수식 (9) 에서와 마찬가지로, 수식 (22) 도 m번째 셀에서의 전송률은 B_m 에서의 전력 할당과 무관하다. 따라서 최적 전력 할당 방법 $\{\hat{\boldsymbol{\sigma}}^{[m,k]}\}$ 은 다음의 최적화 문제에 water-filling 해를 적용함 으로써 구할 수 있다.

$$\max_{\{\hat{\boldsymbol{\Phi}}^{[m,k]}\}} \sum_{k=1}^{K} \hat{\mathbf{R}}_{\text{ZF-IA}}^{[m,k]}$$

subject to $\sum_{k=1}^{K} \operatorname{Tr}\left(\hat{\boldsymbol{\Phi}}^{[m,k]}\right) \leq P_{m}$
(23)

5.2. Robust Regularized ZF-IA Method

정확한 채널 정보가 주어질 때와 마찬가지로 robust GZF-IA 방법의 low-to-mid SNR 영역 전송 용량을 개선하기 위해, 다음의 weighted MSE를 최 소화하는 형태로 robust regularized ZF-IA 송수신 기를 설계한다.

$$\min \sum_{m=1}^{2} \sum_{k=1}^{K} \mathbb{E}\left\{ \left| \hat{\boldsymbol{\Lambda}}^{[m,k]} \mathbf{s}^{[m,k]} - \hat{\mathbf{s}}^{[m,k]} \right|^{2} \right\}$$

subject to
$$\sum_{k=1}^{K} \operatorname{Tr}\left(\hat{\mathbf{T}}^{[m,k]} \hat{\mathbf{T}}^{[m,k]H} \right) \leq P_{m}, \forall m$$
(24)

여기서 $\hat{\Lambda}^{[m,k]} = \hat{U}_{GZF-IA}^{[m,k]} \hat{H}_{m}^{[m,k]} \hat{T}_{GZF-IA}^{[m,k]}$ 는 robust GZF-IA 의 D_{mk} 에 대한 effective channel 로 결정한다.

수식 (24) 의 최적화 문제에 대한 Lagrangian function은 아래의 수식 (25) 와 같이 나타낼 수 있다. 상기 4 장에서처럼 수신 필터 $\{\hat{\mathbf{U}}^{[m,k]}\}$ 가 주 어졌다는 가정하에 최적 송신기 $\{\hat{\mathbf{V}}^{[m,k]}\}$ 을 구한다. $\nabla_{\mathbf{U}^{[m,k]}}\hat{L}=0$,, $\mathbb{E}(\mathbf{E}_{n}^{[m,k]}\mathbf{E}_{n}^{[m,k]H})=\sigma_{\epsilon}^{2}\mathbf{I}_{M}$ 그리고

 $\operatorname{SVD}(\widehat{\mathbf{U}}^{[m,k]}\widehat{\mathbf{U}}^{[m,k]H}) = \mathbf{R}_{\widehat{\mathbf{U}}}^{[m,k]}\mathbf{D}_{\widehat{\mathbf{U}}}^{[m,k]}\mathbf{R}_{\widehat{\mathbf{U}}}^{[m,k]H}$

를 이용해, D_{mk} 에 대한 robust 송신기는 다음과 정리할 수 있다.

$$\hat{\mathbf{V}}^{[m,k]} = \left(\sum_{n=1}^{2}\sum_{i=1}^{K}\hat{\mathbf{\Xi}}_{m}^{[n,i]} + \sum_{n=1}^{2}\sum_{i=1}^{K}\mathrm{Tr}\left(\mathbf{D}_{\hat{\mathbf{U}}}^{[n,i]}\right)\sigma_{\varepsilon}^{2}\mathbf{I}_{N_{p}} + \hat{\mu}_{m}\mathbf{I}_{N_{p}}\right)^{-1} \times \mathbf{P}^{H}\hat{\mathbf{H}}_{m}^{[m,k]H}\hat{\mathbf{U}}^{[m,k]}\hat{\mathbf{\Lambda}}^{[m,k]}$$
(26)

여기서

$$\hat{\mathbf{G}}_{m}^{[n,i]} = \mathbf{P}^{\mathrm{H}} \hat{\mathbf{H}}_{\mathrm{m}}^{[n,i]\mathrm{H}} \hat{\mathbf{U}}^{[n,i]} \hat{\mathbf{U}}^{[n,i]\mathrm{H}} \hat{\mathbf{H}}_{\mathrm{m}}^{[n,i]} \mathbf{P}$$
 이고,
 $\hat{\mu}_{m} \in \mathbf{B}_{\mathrm{m}}$ 의 전송 전력 제약 조건을 만족하도록
bisection method 를 통해 수치적으로 구한다.

수신기도 같은 방법으로, 송신기 $\{\hat{\mathbf{V}}^{[m,k]}\}$ 가 주어졌다는 가정 하에 $\nabla_{\mathbf{U}^{[m,k]*}}\hat{L}=0$ 와 $\mathbb{E}(\mathbf{E}_{n}^{[m,k]}\mathbf{E}_{n}^{[m,k]H})=\sigma_{\epsilon}^{2}\mathbf{I}_{M}$ 를 이용해 다음과 같이 구한다.

$$\hat{\mathbf{U}}^{[m,k]} = \left(\sum_{n=1}^{2}\sum_{i=1}^{K}\hat{\mathbf{\Psi}}_{[n,i]}^{[m,k]} + \sum_{n=1}^{2}\sum_{i=1}^{K}\mathrm{Tr}\left(\mathbf{D}_{\hat{\mathbf{V}}}^{[n,i]}\right)\sigma_{\varepsilon}^{2}\mathbf{I}_{M} + \sigma_{n}^{2}\mathbf{I}_{M}\right)^{-1} \\ \times \hat{\mathbf{H}}_{m}^{[m,k]H}\mathbf{P}\hat{\mathbf{V}}^{[m,k]}\hat{\mathbf{\Lambda}}^{[m,k]H}$$
(27)

여기서 $\hat{\Psi}_{[n,i]}^{[m,k]} = \hat{H}_{n}^{[m,k]} P \hat{V}^{[n,i]} \hat{V}^{[n,i]H} P^{H} \hat{H}_{n}^{[m,k]H}$ 이고, $D_{\hat{V}}^{[n,i]} 는$ $SV D (P \hat{V}^{[n,i]} \hat{V}^{[n,i]H} P^{H}) = R_{\hat{V}}^{[n,i]} D_{\hat{V}}^{[n,i]} R_{\hat{V}}^{[n,i]H}$ 를 이용해 구한다. 수식 (26) 과 (27) 을 Algorithm 1 과 같이 반복적으로 번갈아 구해 수식 (24) 의 weighted MSE를 수렴하는 local optimum 해를 구 할 수 있다.

VI. Discussion: Computational Complexity and Prerequisite Information

이 장에서는 제안하는 regularized ZF-IA (RZF-IA) 방법을 구현하는 데 필요한 computational

$$\hat{L} = \sum_{m=1}^{2} \sum_{k=1}^{K} \operatorname{Tr} \left\{ \hat{\mathbf{A}}^{[m,k]2} - \hat{\mathbf{U}}^{[m,k]H} \hat{\mathbf{H}}_{m}^{[m,k]} \mathbf{P} \hat{\mathbf{V}}^{[m,k]} \hat{\mathbf{A}}^{[m,k]H} - \hat{\mathbf{A}}^{[m,k]H} \hat{\mathbf{V}}^{[m,k]H} \mathbf{P}^{H} \hat{\mathbf{H}}_{m}^{[m,k]H} \hat{\mathbf{U}}^{[m,k]H} \hat{\mathbf{U}}^{[m,k]} + \sigma_{n}^{2} \hat{\mathbf{U}}^{[m,k]} \hat{\mathbf{U}}^{[m,k]H} \right. \\ \left. + \sum_{n=1}^{2} \sum_{i=1}^{K} \hat{\mathbf{U}}^{[m,k]H} \left(\hat{\mathbf{H}}_{n}^{[m,k]} + \mathbf{E}_{n}^{[m,k]} \right) \mathbf{P} \hat{\mathbf{V}}^{[n,i]H} \mathbf{P}^{H} \left(\hat{\mathbf{H}}_{n}^{[m,k]} + \mathbf{E}_{n}^{[m,k]} \right)^{H} \hat{\mathbf{U}}^{[m,k]} \right\} + \sum_{m=1}^{2} \hat{\mu}_{m} \left(\sum_{k=1}^{K} \operatorname{Tr} \left(\hat{\mathbf{V}}^{[m,k]} \hat{\mathbf{V}}^{[m,k]H} \right) - P_{m} \right)$$

$$(25)$$

complexity 와 amount of prerequisite information 을 분석한다. 비교를 위해, 기존 maximizing-weighted-sum-rate (max-WSR) 방법^[2,3] 에 대한 분석도 추가한다.

6.1. Computational Complexity

복소수 곱의 개수를 computational complexity 비교 기준으로 한다. 그림 2. (a) 는 K = 2, M = 6, $L_s = 2$, $N_p(= KL_s) = 4$ 그리고 bisection method의 반복 연산 횟수 (I_2) , $I_2 = 10$ 인 경우에 대한 computational complexity를 보여 준다. 제안하는 RZF-IA 방법과 max-WSR 방법은 송수신 필터를 반복적으로 구한다. max-WSR 방법 은 매 반복 연산 과정에 MSE-weight를 구하는 과 정이 있는 반면, 제안하는 RZF-IA는 MSE-weight 를 GZF-IA 방법의 effective channel로부터 one-shot으로 구한다. 그 결과, 반복 연산 수 (I_1) 가 증가함에 따라 제안하는 RZF-IA 방법의 연산 효율이 더욱 좋아진다.

그림 2. (a) Computational complexity

그림 2. (b) The amount of prerequisite information

6.2. The Amount of Prerequisite Information

Weighted-MSE 를 최소화하는 전치 행렬을 구하 기 위해, 각 셀의 기지국은 feedback 과정과 이웃 셀 기지국과의 협력 과정을 통해 prerequisite information을 획득해야 한다. 제안하는 RZF-IA 방 법은 MSE-weight를 one-shot 으로 구할 수 있기 때문에, {V^[m,k]} 를 갱신하기 위해 유효 채널 U^{[m,k]H}U^[m,k]P∈ℂ^{L_s×N_p},∀k 만 반복적으로 피드백하면 된다. 그러나, max-WSR 방법의 경우 송신 필터와 더불어 MSE weight를 갱신하기 위해 채널 정보와 수신 필터 계수가 따로 필요하다. 같은 이유로, RZF-IA 는 기지국간 협력을 위해 필요한 자원양도 더 작다. 그림 2. (b) 는 RZF-IA 방법이 prerequisite information 면에서 효율적임을 보여준 다.

VII. Numerical Simulation Results

이 장에서는 two-cell MIMO IBC 에 대한 sum-rate 성능을 평가한다. 실험 환경은 K = 2, M = 6, L_s = 2, P_m = P, ∀ m 로 설정한다. 신 호 대 잡음비 SNR = $\frac{P}{\sigma_n^2}$ 로 정의한다. 또한, 채 널 행렬의 각 성분은 CN(0,1) 의 정규 분포를 갖 는 복소 가우시안 확률 변수로 가정한다. 그림 3 은 RZF-IA (굵은 선) 과 max-WSR (가는 선) 의 수렴 성능을 보여준다. 이 그림은 제안하는 RZF-IA 방법이 반복 연산 횟수가 많을 경우 max-WSR 방 법에 비해 sum-rate 성능은 낮으나 보다 빠른 수 렴 속도를 얻을 수 있음을 보여준다. 그 결과, 반복 연산 횟수가 작은 경우 제안하는 RZF-IA 방법이 max-WSR 방법보다 성능이 더 나음을 알 수 있다. 그림 4²) 는 반복 연산 횟수가 작은 경우 I₁ = 1,2 성능을 구한 결과이다. 구체적으로, sum-rate 때 빠른 수렴 속도로 $I_1 = 2$ 일 인해. SNR = 20[dB] 에서 RZF-IA 의 sum-rate은 23.66 [bps/Hz] 로 15.79 [bps/Hz] 인 max-WSR 방법보다 49.8 % 더 좋은 성능을 보여준다. 또한 RZF-IA 방법이 GZF-IA 방법의 성능을 개선함을

max-WSR 방법은 1. 임의의 행렬로 초기화하는 방법 (1 r-init), 2. 100 개의 임의의 행렬로 초기화해 이 중 sum-rate이 가장 큰 것을 선택하는 방법 (100 r-init) 을 고려하였다.

확인할 수 있다. 그림 5 는 반복 연산 횟수가 충분 히 많을 때, I₁ = 100 에서 성능을 보여준다. 이 경우. RZF-IA 방법은 MSE-weight 의 sub-optimality로 인해 max-WSR 방법에 비해 sum-rate 성능이 현저히 낮은데, 이는 computational complexity 와 prerequisite information 을 줄이는 대가이다. 그림 6 은 채널 정보에 오류가 있는 경 우 제안하는 robust RZF-IA 방법의 성능을 보여준 추정 오차가 다. 채널 5 % 인 경우 $(\sigma_{\epsilon}^2 = 0.05\sigma_{h}^2)$ 와 10 % 인 경우 $(\sigma_{\epsilon}^2 = 0.1\sigma_{h}^2)$ 를 비교하면, 5 % 오차에서는 제안하는 robust RZF-IA 방법이 채널 추정 오류를 반영하지 않은 RZF-IA 방법 (non-robust RZF-IA) 에 비해 SNR = 20[dB] 에서 sum-rate이 약 3.55 % 개선 된다. 하지만, 10 % 오차에서는 sum-rate 성능이 약 14.2 % 개선된다. 이를 토대로 채널 추정 오차 가 클수록 제안하는 robust RZF-IA 방법의 성능 개 선 효과가 큼을 확인할 수 있다.

그림 3. Convergence of the proposed RZF-IA method and max-WSR at SNR=10, 20, 30 [dB]

그림 4. Sum-rate performances with small numbers of iteration (I1=1,2)

그림 5. Sum-rate performances with large numbers of iteration (11=100)

그림 6. Sum-rate performances when channel estimation errors exist ($\sigma_{\epsilon}^2 = 0.1 \sigma_h^2, 0.5 \sigma_h^2$)

VIII. Conclusions

본 논문에서는 two-cell MIMO IBC 시스템에서 generalized ZF-IA 방법을 정리하고, sum-rate 성능 을 개선하기 위해 regularized ZF-IA 방법을 제안한 다. Regularization 과정을 효율적으로 하기 위해, generalized ZF-IA 방법의 effective channel 에서 구한 weight 기반 weighted MSE metric 을 이용한 다. 그리고 이로부터 regularized ZF-IA 송수신기를 제안한다. 기존 max-WSR 방법은 weight 를 반복 연산 과정으로 구하는데 비해, 제안하는 regularized ZF-IA 방법은 weight를 generalized ZF-IA 방법을 이용해 one-shot 으로 구한다. 그 결과 반복 연산 횟수가 작을 때, regularized ZF-IA 방법의 성능이 우수함을 실험으로 확인할 수 있다. 또한 분석을 통 해 regularized ZF-IA 방법이 필요한 자원양과 수렴 속도 측면에서 보다 효율적임을 확인하였다. 마지막 으로 채널 정보에 오차가 있는 경우 상당한 robustness를 제공하는 robust regularized ZF-IA 방 법을 제시하였다.

References

- H. Kwon, S. Ko, H. Seo, and B. G. Lee, "Inter-cell interference management for next-generation wireless communication systems," *J. Commun. Networks*, vol. 10, no. 3, pp. 258-267, Sep. 2008.
- [2] Q. Shi, M. Razaviyayn, Z. Luo, and C. He, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel," *IEEE Trans. Signal Process.*, vol. 59, no. 9, pp. 4331-4340, Sep. 2011.
- [3] J. Shin. J. and Moon, "Weighted-sum-rate-maximizing linear transceiver filters for the K-user MIMO channel," interference IEEE Trans. Commun., vol. 60, no. 10, pp. 2776-2783, Oct. 2012.
- [4] J. Kim, S.-H. Park, H. Sung, and I. Lee, "Spatial multiplexing gain for two interfering MIMO broadcast channels based on linear transceiver," *IEEE Trans. Wireless Commun.*, vol. 9, no. 10, pp. 3012-3017, Oct. 2010.
- [5] W. Shin, N. Lee, J.-B. Lim, C. Shin and K. Jang, "On the design of interference alignment for two-cell MIMO interfering broadcast channels," *IEEE Trans. Wireless Commun.*, vol. 10, no. 2, pp. 437-442, Feb. 2011.
- [6] C. Suh, M. Ho, and D. Tse, "Downlink interference alignment," *IEEE Trans. Commun.*, vol. 59, no. 9, pp. 2616-2626, Sep. 2011.
- [7] V. R. Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," in *Proc. IEEE Int. Conf. Commun. (ICC)*, pp. 971-975, Beijing, China, May 2008.
- [8] S. Jafar, and M. Fakhereddin, "Degrees of freedom for the MIMO interference channel," in *Proc. IEEE Int. Symp. Inform. Theory*, pp. 1452-1456, Seattle, U.S.A., July 2006.

- [9] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, "A vector-perturbation technique for near-capacity achieving multiantenna multiuser communication. Part I: Channel inversion and regularization," *IEEE Trans. Commun.*, vol. 53, no. 1, pp. 195-202, Jan. 2005.
- [10] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," *IEEE Trans. Signal Process.*, vol. 52, no. 2, pp. 461-471, Feb. 2004.
- [11] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

본 연구 결과의 일부는 IEEE Commun. Letters 에 publish 가 2013년 5월 31일자로 최종 결정 되었습니다.

신 준 우 (Joonwoo Shin)

2000 년 2월 한양대학교 전
자, 전자통신, 전파 공학부
졸업
2002 년 2월 한국과학기술원
전기 및 전자공학과 석사
2013 년 2월 한국과학기술원
전기 및 전지공학과 방신

전기 및 전자공학과 박사

<관심분야> Multi-user MIMO, MIMO Interference channel, Relay systems.