• Title/Summary/Keyword: zero square ideal

Search Result 5, Processing Time 0.016 seconds

IDEALS AND DIRECT PRODUCT OF ZERO SQUARE RINGS

  • Bhavanari, Satyanarayana;Lungisile, Goldoza;Dasari, Nagaraju
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2008
  • We consider associative ring R (not necessarily commutative). In this paper the concepts: zero square ring of type-1/type-2, zero square ideal of type-1/type-2, zero square dimension of a ring R were introduced and obtained several important results. Finally, some relations between the zero square dimension of the direct sum of finite number of rings; and the sum of the zero square dimension of individual rings; were obtained. Necessary examples were provided.

  • PDF

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.

UNIT GROUPS OF QUOTIENT RINGS OF INTEGERS IN SOME CUBIC FIELDS

  • Harnchoowong, Ajchara;Ponrod, Pitchayatak
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.789-803
    • /
    • 2017
  • Let $K={\mathbb{Q}}({\alpha})$ be a cubic field where ${\alpha}$ is an algebraic integer such that $disc_K({\alpha})$ is square-free. In this paper we will classify the structure of the unit group of the quotient ring ${\mathcal{O}}_K/A$ for each non-zero ideal A of ${\mathcal{O}}_K$.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

Analysis of Tubular Structures in Medical Imaging

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.545-550
    • /
    • 2009
  • A method fully utilizing multiscale line filter responses is presented to estimate the point spread function(PSF) of a CT scanner and diameters of small tubular structures based on the PSF. The estimation problem is formulated as a least square fitting of a sequence of multiscale responses obtained at each medical axis point to the precomputed multiscale response curve for the ideal line model. The method was validated through phantom experiments and demonstrated through phantom experiments and demonstrated to accurately measure small-diameter structures which are significantly overestimated by conventional methods based on the full width half maximum(FWHM) and zero-crossing edge detection.