• Title/Summary/Keyword: zero energy building

Search Result 138, Processing Time 0.028 seconds

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

A Study on the Issues and Trends of Zero Energy Policy (제로에너지 정책·제도 변화에 따른 이슈 및 트랜드 분석 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2020
  • In order to reduce greenhouse gas by 30% compared to BAU in 2020, research and development of zero-energy building construction technology for reducing greenhouse gas emissions in the construction industry is being conducted. With the recent implementation of the policy as mandatory through the establishment and commercialization of the zero energy building base, the government should devise measures to support and expand technology through the identification of the current status of the zero-energy building incentive system and the erasure of the erasure. In order to implement zero-energy buildings, excessive construction costs are presented as a major issue in revitalizing the supply of new and renewable energy to enhance Passive (energy efficiency grade of 1++) and achieve self sufficiency of energy (20% or higher). In this paper, the major problems and solutions for zero-energy building identification were presented in order to activate the dissemination of zero-energy buildings, and the recent policy changes resulting from the mandatory use of zero-energy buildings were analyzed.

Energy self-sufficiency of office buildings in four Asian cities

  • Kim, Jong-Jin
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This paper examines the climatic and technical feasibilities of zero energy buildings in Seoul, Shanghai, Singapore and Riyadh. Annual and seasonal energy demands of office buildings of various scales in the above cities were compared. Using optimally tilted rooftop PV panels, solar energy production potentials of the buildings were estimated. Based on the estimates of onsite renewable energy production and building energy consumption, the energy self-sufficiencies of the test buildings were assessed. The economic feasibilities of the PV systems in the four locations were analyzed. Strategies for achieving zero energy buildings are suggested.

Investigation of Institutional Improvement through Evaluation of Zero-Energy Buildings (제로에너지 빌딩 평가를 통한 제도적 개선방안에 대한 조사 연구)

  • Chae, Sookwon;Kim, Juhwan;Chae, Hyunbyung
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-94
    • /
    • 2016
  • Energy use has been recognized worldwide as a main cause of global warming and it is at the center of climate change. In this study, problems and measures of zero-energy building construction are investigated and analyzed. Based on the results, evaluation criteria of the zero-energy building are suggested. Performance related factors(Q) representing the environmental grade were divided into three categories as outdoor, indoor environment and maintenance. Energy related factors(LR) representing the energy load were divided into an energy, materials & resources, water cycle management, land use and transportation. Detailed fifty three items are listed for the evaluation under the consideration of energy, water cycle management sections gave weight. Upon receiving the first in the environment friendly certification system, Seoul Central Post Office and Seoul Metropolitan Water Supply Center evaluated. The reason why this score difference is due to lack of use of new generation energy building construction is required expensive costs so need expansion of governmental support. This effort is successful zero energy building construction and copes with global warming and climate change.

The Concept and Modeling of Zero Energy Buidling(ZEB) (Zero Energy Building(ZEB) 개념 및 설계 모델링에 관한 연구)

  • Park, Sang-Ho;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2186_2187
    • /
    • 2009
  • 본 논문은 Zero energy building(ZEB) 또는 net zero energy building의 정의와 개념에 대해서 서술 하였다, 그리고 ZEB의 장단점을 알아보고 연구 방향에 대해서 논하였다. ZEB는 주거와 상업적 빌딩에 신재생에너지를 이용하고 에너지 소비 효울을 높여 큰 에너지 절감을 통해 경제적 이익을 얻을 수 있고 저탄소 배출로 환경을 보존 할 수 있는 녹색성장의 한 방법이다. "Zero energy"라는 단어는 요즘 많이 사용 되는데 비해 정확한 정의와 개념에 대해서는 이해가 부족하다. 따라서 본 논문에서는 ZEB에 대해 정확한 정의와 세계적 흐름, ZEB의 장단점 그리고 앞으로 연구해야 할 방향에 대해 논의 하겠다.

  • PDF

ENERGY ANALYSIS UTILIZING BIM FOR ZERO NET ENERGY TEST HOME

  • Cho, Yong K.
    • Journal of KIBIM
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents the results of a theoretical energy analysis of a research test bed called the Zero Net Energy Test House (ZNETH) in Omaha, Nebraska in U.S.A. The ZNETH project is being designed and built with the goal of consuming a negligible amount of energy by offsetting remaining usage after energy conservation. The theoretically consumed and generated energy levels were analyzed using energy modeling software programs. By integrating a highly graphical and intuitive analysis with a Building Information Model(BIM) of the house, this investigation introduces strategies to include sustainable materials and systems to predict energy generation with a case study of ZNETH. In addition, this paper introduces parametric analyses for better envelope design and construction material selection by analyzing simulated energy consumption with various parametric inputs, e.g., material types, location, and size. It was found that the current design of ZNETH does not meet its goal of zero net energy. Sugeestions are presented to assist ZHETH in meeting its net zero energy goal.

A methodology for verification of energy saving performance of Zero Energy School (ZES) (Zero Energy School(ZES) 에너지절감 성과 검증을 위한 방법론 연구)

  • Lee, Hangju;Ahn, JongWook;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Domestic buildings account for 25% of national greenhouse gas emissions and 20% of energy consumption, so energy efficiency improvement of buildings is recognized as the main target of national energy demand management. To improve the energy efficiency of the building, policies are implemented by preparing "zero-energy building national roadmaps" and enhancing the efficiency of national energy demand management through early activation as a result of expansion of the mandatory zero-energy building. Also, there is a growing need to verify the performance of energy savings after the construction is completed. Therefore, methods for evaluating energy performance of buildings should be suggested. This paper aims to develop and present methods for verifying energy performance of Zero Energy School, which can be applied internationally, by visiting domestic schools on-site at the same time as international standards and guidance analysis.

A Study on the Investment Review of Passive and Active Elements through Comparison of Energy Demand and Generation Variation of Zero Energy Building (제로에너지건축물의 에너지 소요량과 생산량 비교를 통한 패시브와 액티브 요소의 투자 검토 연구)

  • Lee, Soon-Myung;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.13-22
    • /
    • 2018
  • At the time when zero energy building is expected to be generalized, this study examines whether the investment in the passive element or the active element is more effective in terms of energy in the construction process of zero energy building. In other words, the effect of energy demand by passive element and the change of energy generation by active element are examined in terms of the same investment cost. The purpose of this study is to examine the change of energy demand by passive element and the change of energy generation by active element in zero energy building and to make reasonable investment decision by comparing energy with cost aspect. For this purpose, we selected the buildings to be subjected to energy simulation and derive the required energy amount and energy generation amount by using meteorological data of four regions in Korea. The change of energy demand and energy generation according to the change of application condition was derived. In order to compare and analyze the changes in energy demand and generation at the same cost standard through price survey and quotation of window and photovoltaic power generation equipment.

Development of Initial Design Stage Guidelines for nearly Zero Energy Offices : A Central-Climate Zone of Korea Case Study

  • Kang, Hae Jin;Yi, Won
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • This study aimed to develop a design manual to be used during the initial stage of the nearly Zero Energy Building (nZEB) design process. Recently, with the increased demand for nZEBs, there are many architects and architectural firms who are becoming interested in nZEB design. However, since the nZEB design process requires a different approach to the conventional building design process, architects have difficulties with application of the nZEB design process in their projects. Therefore, a design manual which can be used in the nZEB design process was developed in this study. Based on an intensive literature review, energy-saving strategies and their performance levels, which affect heating and cooling energy consumptions were established for a reference building. To analyze the sensitivity of each energy strategy to the overall performance, computer simulations using EnergyPlus were performed. At the same time, an Analysis of Variance assessment was conducted to estimate the relative importance of each energy factor. The energy sensitivity and priority of the energy factors was developed into a set of design guidelines.

The Study on the Zero-Energy House Prototype of Country House (농촌주택에 적합한 제로에너지 하우스의 프로토타입 연구)

  • Im, Kyung-Up;Kim, Bich-Na;Lee, Chul-Sung;Yoon, Jong-Ho;Jin, Kyeong-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.185-190
    • /
    • 2009
  • Due to the building energy consumption of total energy consumption of Korea takes over 24%, economizing building energy and using renewable energy resources is being required. To suggest the prototype of zero energy house of country house, the passive systems and active systems are applicated and simulated. In case of wall insulation system is applicated, the heating load of building is reduced. Also, clear triple pair glazing system reduced 2.1% of heating load of building. The amount of reducing heating load by infiltration is depending on the Heating system. In this model, the 0.3ACH made 14.6% saving on heating load from base infiltration 0.82ACH. The solar thermal system of active system could save 80% of DHW and PV system supplies electric power more than average consumption of year. Through the optimum process, the end use of zero energy house of country house is 36kWh/m2.yr and total energy consumption is reduced about 74.2%.

  • PDF