• Title/Summary/Keyword: yoke

Search Result 302, Processing Time 0.027 seconds

Study of the Driving Characteristics in the Magnetic Fluid Linear Pump by AC Operating Currents (Magnetic Fluid Linear Pump의 AC 전류에 의한 운전 특성에 관한 연구)

  • Park Gwan Soo;Seo Kang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • In the magnetic fluid linear pump, the pumping forces and pumping speed mainly depend on the current patterns. In this research, a new design to reduce the discontinuities of the pumping forces of the MFLP was studied. Continuous pumping of the newly designed MFLP by using AC current increases pumping efficiency and reduces the pumping force. Forming shapes of the magnetic fluid at the intermediate state were computed and compared to measurement. Since the back flow of the fluid is reduced remarkably, 4 yoke's AC driving is more efficient than 7 yoke's DC driving. The size, weight and pumping discontinuity are also reduced.

Robust Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System using Taguchi Method

  • Kim, Jae-Hee;Kim, Jun-Hyung;Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • The linear actuator has the inherent drawback of air gap variation because its linear motion is usually guided by the springs, which destabilizes the dynamic performance. In order to design the linear actuator to be insensitive to air gap, this paper describes the robust design of the air compressor driving linear actuator using Taguchi method. The orthogonal arrays are constructed with selected control factors and noise factor for minimum experiment. The control factors are thickness of inner magnet, height of upper yoke, thickness of outer magnet and thickness of lower yoke while noise factor is airgap. The finite element analysis using commercial electromagnetic analysis program "MAXWELL" are performed instead of experiment. ANOVA are performed to investigate the effects of design factors. In result, the optimal robust linear actuator which is insensitive to air gap variation is designed.

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.

Experimental Study on the Reduction of Noise Dispersion for HEV Relay (HEV 계전기의 소음분산 저감에 관한 실험적 연구)

  • Kim, Wonjin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.324-330
    • /
    • 2013
  • The dispersion of acoustic noise during the turn-on and turn-off switching of HEV(hybrid electric vehicle) relay was experimentally analyzed to identify the reason for the dispersion of noise level. An effective method was proposed to reduce the dispersion of noise level. First, a method to wrap the side of moving core with a tape was adopted to reduce the transverse vibration. It enabled the moving core to make a consistent motion and reduce the dispersion of noise level from switching operation of relay. Second, the dispersion of noise level from vibration transmission of parts such as the outer frame and yoke caulking part of relay were tested to find out main sources. From this result, it was identified that the yoke caulking part made inconsistent transient vibration and noise dispersion.

Improvement of Assembling Efficiency for Moving Magnet Type Actuator in High Density Optical Disc (고밀도 광 디스크용 가동자석형 구동기의 조립성능 개선)

  • 김도환;정호섭;윤용한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.356-361
    • /
    • 2004
  • A moving-magnet type pickup actuator has an assembly error . That is, the actuating part of an actuator is shifted from initial position after we assemble it into yoke. This is the result of an effect of magnetic force between magnet and yoke. We performed magnetic-analysis using FEA. As a result of simulation, we improved the assembl ing efficiency for moving-magnet type actuator.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF

Influence of Stator Structure on Vibration of Switched Reluctance Motor

  • Ha, Kyung-Ho;Kim, Young-Kyoun;Lee, Geun-Ho;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.95-99
    • /
    • 2002
  • This paper deals with the influence of the various stator structures in a Switched Reluctance Motor (SRM) on the vibration behaviors. The stator part in SRMs produces most vibrations. Therefore, the geometric design of the stator is necessary to reduce the vibration. The free and forced vibrations for four different stator yoke structures are analyzed by the electromagnetic and structural Finite Element Method (FEM). Then vibration stator structure that offers less is proposed. The modal analysis results of a tested motor are compared with measurements.

A study on the Design and Analysis of Double Cylinder motor (Double Cylinder Motor설계 및 해석에 관한 연구)

  • Maeng, Kyung-Ho;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.60-63
    • /
    • 2004
  • BLDC Motor has many advantages but the motor has slots in Stator like as other conventional Motors therefore cannot be eliminated torque ripple which is not acceptable for a special purpose. For high speed and high efficiency and no torque ripple is a Double Cylinder Motor suggested which has a air-gap-winding and rotating yoke with magnet. Because Airgap winding needs no slot and no ironloss is made in rotating yoke. In this paper describes design and construction and theoretical and experimental investigation of a Double Cylinder Motor.

  • PDF

A Study on the Efficient Finite Element Technique using Geometrical Symmetry (형상의 대칭성을 이용한 효율적인 3차원 유한요소 해석 기법에 관한 연구)

  • Im, Chang-Hwan;Kim, Hong-Gyu;Lee, Seok-Hui;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.462-467
    • /
    • 2000
  • In general, when geometry and current distribution have a periodic or symmetric property, the analysis of a part model is sufficient to represent that of a whole model by using the periodic boundary condition. It is impossible, however, to apply the periodic boundary condition when the current distribution is not symmetric even if the geometry of the model is symmetric. In this paper, a novel technique to resolve this problem is proposed. Even when the geometry is symmetric and the current distribution is not, the proposed method enables that calculation time for a whole model is reduced to that for a part model. The proposed method is applied to a deflection yoke (DY), and validness and efficiency of the method are verified.

  • PDF