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Flux Linkage Calculation for 3-D Finite Element Analysis
Chang-Hwan Im, Hyun-Kyo Jung and Hong-Kyu Kim

Abstract - Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path
-if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration.
The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage
calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimen-
tal one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a

coil.
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1. Introduction

Flux linkage calculation is a very essential part in ana-
lyzing electric devices using 3-dimensional finite element
method (FEM). The flux linkage should be calculated for
the back-EMF analysis, inductance calculation, voltage
source FEM, and so on. Although there are some methods
that can be easily thought, a general method applied to an
arbitrary shaped coil has not been developed yet.

The easiest way to calculate flux linkage is a direct line
integration using

A:Njc A-dl (1)

where A is flux linkage, 4 vector potential, / directional
vector, N the number of coil turns and C integration path.

An integration path along a solidly modeled coil is gen-
erated as shown in Fig. 1. Then, the vector potentials at
each sampling point are calculated by interpolation. The
term, dI, is evaluated by using two successive sampling
points. Then the flux linkage is calculated by summing the
values of 4+ dl at all the sampling points. However, there
are some problems in applying the method to practical
cases. First, finding the current paths and sampling points
of a complicated coil is very difficult. Second, multiple
paths that contain different turns are needed in case of a
separated coil such as a deflection yoke. Third, if the cross-
sectional area of a coil is large or varies along the coil di-
rection, additional paths are required to averaging the vec-
tor potential values. After synthesizing these disadvantages,
it can be concluded that the method is not practical enough
to apply to general coil systems.
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In this paper, a novel method to calculate flux linkage
for 3-dimensional finite element analysis is proposed. The
proposed method does not require any integral path if the
direction of current in a coil is known. Using the method,
the line integration of vector potential is changed into the
volume integration. Current direction and cross-sectional
areas are calculated based on the novel technique devel-
oped by the authors [1]. The method proposed in this paper
is verified by applying to a very complicated deflection
yoke model. The simulation result is verified by the com-
parison with the experimental one. From the case study, it
will be proved that the proposed method is very accurate
and effective to calculate the flux linkage of a coil.

Integration Path

Fig. 1 Direct integration method to calculate flux linkage

2. Novel Method to Calculate Flux Linkage
2.1 Case I — Cross-sectional Area of Coil is Uniform

The basic equation to calculate flux linkage is given as
(1). In the magnetic field analysis with vector potential
formulation, coil parts are usually modeled as solid forms.
To calculate the flux linkage more effectively, the line in-
tegration in (1) will be transformed into volume integration.
First of all, following three assumptions are needed before
the transformation.
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(Assumption 1) The current direction of an element that
belongs to coil region is uniform.

(Assumption 2) The value of vector potential of the ele-
ment is assumed to be uniform (average value).

(dssumption 3) Coil region includes enough elements to
satisfy the above two assumptions.

Assume an element () in the coil region as shown in Fig,

2(a). At the first stage, the direction of current should be
determined as in the figure. The current direction can be
determined by using a recently proposed technique by the
authors [1]. The detailed description is contained in the
APPENDIX. Then, in the element (e), n surfaces that are
perpendicular to the current direction are determined as
shown in Fig. 2(b). In fact, those surfaces correspond to
equip-potential surfaces when electrostatic finite element
analysis is performed. It is because current density J is in
proportion to electric field intensity £ and £ is perpendicu-
lar to the equip-potential surfaces.

In case that the cross-sectional area of a whole coil is
uniform as the case of Fig. 1, the number of the coil turns
passing through an unit area 7, can be written as

N
75

@)

Cross

where, N is the total number of coil turns and S, is the
cross-sectional area. Then, the number of the coil turns
passing through the i-th surface of the element (¢) 7@ can
be evaluated by

T =T,8 = Ls}‘f) €)

Ccross

where, §is the area of the i-th surface.
Then, the flux linkage in (1) can be modified as

A= ZZA(E) @ ]:.(e)di(e) @)
(e) i=l
where, 4 is the average vector potential of an element (e),
I® is the unit directional vector of current flow, and d®
the distance between i and i+ th surface.
Substituting (3) for (4) yields

A= ZiA(e) ,1(8) L&(E)di(ﬂ . (5)

(e) i=1 cross
This equation can be rewritten as follows:

A= S_JV_ZA(E) .l(e) Z Si(e)di(e) (6)

cross (€) i=1

From the assumption that all the surfaces in the element
are parallel each other, following equation can be deduced:

lim» 5§94 =y %)
n—->0 im1

where V® means the volume of the element.

Directiomof current

() ()
Fig. 2 Definitions of variables in an element: (a) direction
of current (b) surfaces perpendicular to the direction

Finally, the flux linkage can be calculated by

ﬂ/ =LZA(6) ,l(e) V(e) . (8)

cross (€)

From the last equation, it is found that the flux linkage
can be calculated very easily by using the values of current
direction, vector potential, and elemental volume.

2.2 Case II — Cross-sectional Area of Coil is not Uni-
form

Practically, in case of the deflection yoke, coil winding
is highly pressed and deformed with maintaining its thick-
ness, which makes the cross-sectional areas perpendicular
to the current directions to be non-uniform [4]. In this case,
equations (2) and (3) are not valid because the number of
the coil turns passing through unit area varies from an ele-
ment to another element. The problem can be resolved by
using a concept adopted in [1]. First, two arbitrary poten-
tials are imposed as a boundary condition on the cross sec-
tions 7 and /7 in Fig. 3. By the electrostatic analysis using
FEM, electric field intensity vector £ can be evaluated for
each element. The direction of E is the same as that of cur-
rent density, as mentioned in the previous section. Between
two potentials imposed on the cross sections I and II, m
potentials are determined (¢, j = 1,2,..., m) and equipoten-
tial surfaces for each potential are found. Then the areas of
each equipotential surface, 4; ( = 1,2,..., m) are calculated.
Because the current direction is perpendicular to the equi-
potential surface, the number of the coil turns passing
through unit area of each surface can be defined as

j N

equip = A_ (9)
J

where, Tegwp is the number of the coil turns passing
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through unit area of j-th equipotential surface and N is the
total number of turns. If the average electric scalar poten-
tial of an element (e) is ¢ © and the value is between ¢ ; and
¢ j+1 , the number of turns passing through the element T
can be calculated by

(&) (e)
ﬁa:¢ '%]m4_¢ -%”TW
¢j+1“¢j e

7 ¢j+1 ’“¢j e

Then, the number of the coil turns passing through i-th
surface in the element (e) 7 can be evaluated by (11)
instead of (3).

(&) () qle)
=17 S| 1)

(10)

Then, the flux linkage in (5) is rewritten as

A= ZZA(E) Q) I;};) Si(f-’)di(e) . (12)

(e) i=l

Applying (7) to the equation (12) yields the final equa-
tion as follows:

A= (Z; A IO TOVO . (13)

From (13), it can be seen that the only difference be-
tween two cases lies in describing 7. Equation (8) is just
a special case when the term is constant for all elements.

Cross-section I

Cross-section I

Fig. 3 Model to explain the concept of electrostatic field
analysis

3. Simulation and Results

The proposed method is applied to a very complicated
deflection yoke model. The simulation result is verified by
the comparison with the experimental one.

A deflection yoke (DY) is usually used for deflecting

electrons in color display tubes (CDTs) or color picture
tubes (CPTs) [3]. The DY consists of three parts — horizon-
tal coil, vertical coil and ferrite core. Because of a pressing
process during the winding process, some parts of the coils
are highly distorted. Therefore, the cross-sectional areas
perpendicular to the winding direction are not uniform.

Among various characteristics of the DY, the sensitivity
of a deflection coil is a very important factor that is closely
related to energy saving. The sensitivity is defined as LxF
(Inductance x square of maximum current). To save energy
consumption, it is obvious that smaller value of the sensi-
tivity is better. As seen in the definition, the inductance
calculation of a coil is the main part to calculate the sensi-
tivity. Because the sensitivity of a horizontal coil is much
larger than that of a vertical coil and the mutual inductance
between two coils is zero, only the horizontal coil is con-
sidered in this paper.

Fig. 4 shows the deflection yoke that consists of hori-
zontal coil and ferrite core. The complicated coil is mod-
eled by using a very accurate coil winding modeler that is
presented in [4]. Fig. 5 shows the manufactured one. Fig. 6
shows the generated meshes of the horizontal coil and the
ferrite core. Total numbers of tetrahedral elements and
nodes are 85383 and 14252, respectively.
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Fig. 4 Analysis model — deflection yoke with horizontal
coil and ferrite core
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Fig. 5 Manufactured deflection yoke
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Fig. 6 Generated meshes (a) meshes of horizontal coil (b)
mesh of ferrite core

In the analysis of the DY, the accurate calculation of
current density distribution is the most important. The cur-
rent density distribution of the coil is analyzed based on the
electric field analysis as the previous case. Calculated elec-

Cross Section |

Cross Section 11

Fig. 7 A quarter model of horizontal coil for the electric
field analysis

tric potential and current density distribution will be used
for the flux linkage calculation again. Fig. 7 shows a quar-
ter of a whole coil system. To perform an electrostatic
FEM, different boundary conditions (two arbitrary poten-
tials, e.g. 0V and 100¥) are imposed on the cross-sections 1
and II. From the electrostatic analysis, the equipotential
surfaces for calculating the current density distribution are
obtained as shown in Fig. 8. Fig. 9 shows the current den-
sity vector distribution calculated by the proposed method.

Magnetic field analysis is performed using the 3-D FEM
formulated with vector potentials. Nonlinear analysis is not
required because the current is too small to saturate the
ferrite core. The calculated flux density vector is shown in
Fig. 10. It is found, from the figure, that a uniform field is
formed inside the ferrite core.
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Equip-potential
planes

Fig. 8 Calculated equip-potential planes

Fig. 9 Calculated current density vector
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Fig. 10 Plot of calculated flux density vector

To calculate the flux linkage of the horizontal coil, the
cross-sectional areas perpendicular to the current direction
are calculated for each electric scalar potential. Fig. 11
shows the cross-sectional area versus the electric scalar
potential. Then, the flux linkage of the coil is calculated
using (13) with the calculated vector potential, direction of
electric field intensity vector, volume of each element, and
the cross-sectional areas. The calculated inductance is
compared to that by an experimental one measured by us-
ing an LCR meter. The results are shown in Table 1, where
the numerical result shows very good agreement with the
experimental one.
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Fig. 11 Cross-sectional area versus electric scalar potential

Table 1 Comparison of Inductance Calculation
Cases Inductance [mH]
Numerical result 0.126
Experimental result 0.13

4. Conclusions

In this paper, a novel method to calculate flux linkage in
3-dimensional finite element analysis is proposed. The
proposed method is very easy to implement because it
needs no integral path. To calculate the flux linkage of a
solidly modeled coil effectively, the line integration of vec-
tor potential is changed into the volume integration. The

method is verified by the application to a complicated de-
flection yoke. The result is verified by the comparison with
experiments. From the case study, it is shown that the pro-
posed method is very accurate and effective in calculating
the flux linkage of an arbitrary shaped coil. It is expected
that the proposed method can be applied to all the cases of
problems including complex shaped coils. Further studies
should be continued for the practical applications such as
back-EMF analysis, voltage source FEM, and so on.

Appendix Novel Technique for Current Density
Analysis of Solidly Modeled Filamentary Coil 1]

In case of the filamentary coil winding, the current den-
sity of the coil is proportional to the density of the fila-
ments per volume. Therefore, when the filament density is
constant, the magnitudes of current densities at every point
have constant values as well. However, when some part of
the coil is pressed and the shape of the coil is highly de-
formed as the case of a deflection yoke, a novel technique
should be introduced. The proposed method is based on the
finite element analysis of electrostatics. Using the calcu-
lated equipotential surfaces, current density vectors are
interpolated on the basis of electric potentials. The main
characteristic of the method is the use of equipotential sur-
faces, which is different from the previous approach in
[5,6]. The main idea comes from the fact that the current
density is closely related to the electric field intensity,
which is perpendicular to the equipotential surfaces.

The procedure for the proposed method is as follows:

A. Electric Field Analysis

Constant potentials are imposed as a boundary condition
to the cross sections 7 and I/ in Fig. 11. By the electrostatic
analysis using finite element method, electric field inten-
sity vector E can be evaluated for every element. The unit
directional vectors of E are found by dividing £ with its
own magnitude.

B. Calculation of Discrete Current Densities

Between two potentials imposed to the cross sections /
and /I, n potentials are determined (¢, j = 1,2,..., m) and
equipotential surfaces for each potential are found. Then
the areas of each equipotential surface, S; (j = 1,2,..., m)
are calculated. For each equipotential surface, the magni-
tudes of current density J; are calculated by

j N
A,

J

(14)

where i is the current value of a filament and N is the num-
ber of coil turns.
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C. Calculation of Current Density for Each Element

Average potential values are evaluated for all elements.
If the potential of an element (e) ¢® has the value between
¢ and ¢;., , the magnitude of current density J“ is calcu-
lated by

¢(e)_¢j J _¢<e)"¢j+1 J
- .

¢j+1 "(bj ! ¢j+1 _¢j !

The current density vectors of all elements can be found

by multiplying the unit directional vectors of E and the
magnitudes of the current densities calculated by (15).

J© = (s
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