• 제목/요약/키워드: yielding frames

검색결과 91건 처리시간 0.02초

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수 (Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses)

  • 이승원;이원호;김형준
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.509-516
    • /
    • 2014
  • 일반적으로 지진취약도를 평가할 때 사용되는 해석방법 중 하나인 역량스펙트럼 방법은 증분동적해석에 비해 해석의 정확성이 떨어지는 제한점이 있다. 본 연구에서는 증분동적해석이 가장 정확도가 높은 해석기법이라는 점에 착안하여 증분동적해석을 이용한 지진취약도 곡선의 도출과정을 제안하였다. 타당성 비교를 위하여 역량스펙트럼 방법과 제안된 방법으로 도출한 취약도 곡선을 비교하여 두 해석기법에 의한 지진취약도 곡선의 경향을 분석하였다. 그 결과 Slight damage와 Moderate damage의 경우 두 해석방법이 유사한 곡선 경향을 보이나 Extensive damage와 Complete damage의 경우에는 IDA방법에 의한 곡선이 더 가파른 경향을 보였다. 이는 구조물의 거동을 이상화하여 극한점 이후 구조물의 저항 강도가 떨어지지 않는다고 가정하는 역량스펙트럼 방법의 영향을 받는 것으로 사료된다.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

순차하중을 재하한 3차원 강뼈대 구조물의 극한강도 실험 (Ultimate Strength Testing of 3-D Steel Frame Subjected to Non-Proportional Loads)

  • 김승억;강경원
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.59-67
    • /
    • 2002
  • 2층, 1경간 그리고 횡지지되지 않은 3차원 강뼈대 구조물의 극한강도 실험을 수행하였다. 과거의 강뼈대 구조물 실험은 2차원 구조물들의 실험이 대부분이었으므로 이 분야의 지식을 확대하기 위하여 3차원 실험에 대한 연구가 필요하다. 실험체에 수직과 수평 비비례하중을 재하하여 하중-변위곡선을 얻었다. 실험결과들은 3차원 비선형 해석의 검증을 위하여 유용하게 사용될 수 있다. ABAQUS를 이용한 3차원 비선형해석으로 얻은 결과를 실험 데이타와 비교하였다.

Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure

  • Cho, Sang-Rai;Muttaqie, Teguh;Do, Quang Thang;Kim, Sinho;Kim, Seung Min;Han, Doo-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.711-729
    • /
    • 2018
  • This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel. The shells were initially formed by cold-rolling, and flat-bar ring frames were welded to the shell. The hydrostatic pressure tests were conducted by using water as the medium in pressure chambers. The details of the preparation and main test were briefly explained. The investigation identified the consequence of the structural failure modes, including: shell yielding, local shell buckling between ring stiffeners, overall buckling of the shell together with the stiffeners, and interactive buckling mode combining local and overall buckling. In addition, the ultimate strengths were predicted by using existing design codes. Non-linear numerical computations were also conducted by employing the actual imperfection coordinates. Finally, accuracy and reliability of the predictions of design formulae and numerical were substantiated with the test results.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석 (Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties)

  • ;한상을
    • 한국강구조학회 논문집
    • /
    • 제21권6호
    • /
    • pp.597-608
    • /
    • 2009
  • 본 연구에서는 접합부 특성이 고려된 공간프레임의 대변형 탄소성해석법에 관한 내용을 기술한다. 이 해석법은 유한변형을 고려한 대변형 탄성해석법에 기초한 것으로 부재의 재료적 탄소성, 접합부 반강접 특성을 추가적으로 고려하였다. 절점의 유한변형은 오일러의 개념으로 부터 유도되었으며, 부재좌표계에서 계산된 부재변형은 보-기둥식에 대입하여 부재력을 계산하였다. 부재변형은 부재축변형과 휨에 의한 축변형효과를 함께 고려하여 계산하였으며, 부재축력의 휨강성, 비틀림강성에 대한 효과를 고려하여 항복함수를 계산하였다. 재료는 완전 탄소성으로 가정하였고, 항복은 부재 양단부에서 집중하여 발생하는 소성힌지의 개념을 사용하였다. 부재 접합부 반강접 특성은 지수모델이나 선형모델을 적용하였고, 접합부 특성이 고려된 탄소성 후좌굴해석을 수행하기 위해 호장법을 사용하였다. 본 연구내용의 정확성 및 효율성을 검증하기 위해 공간프레임에 대한 해석을 수행하였다.