• Title/Summary/Keyword: yield mol%

Search Result 317, Processing Time 0.025 seconds

Start-up Strategy for the Successful Operation of Continuous Fermentative Hydrogen Production (연속 혐기성 수소발효 공정에서 성공적인 start-up 방법)

  • Lee, Chang-Kyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • The variations of performance and metabolites at an early stage were investigated for the successful start-up technology in continuous fermentative hydrogen production. Unsuccessful start-up was observed when the operation mode was changed from batch to continuous mode after the yield was reached to 0.5 mol $H_2$/mol $hexose_{added}$ by batch mode. $H_2$ production continued till 12 hours accompanied by butyrate production, but did not last with propionate production increase. It was suspected that the failure was due to the regrowth of propionic acid bacteria during batch mode which were inhibited by heat-shock but not completely killed. Thus, successful start-up was tried by early switchover from batch to continuous operation; continuous operation was started after the $H_2$ yield was reached to 0.2 mol $H_2$/mol $hexose_{added}$ by batch mode. Although $H_2$ production rate decreased at an early stage, stable $H_2$ yield of 0.8 mol $H_2$/mol $hexose_{added}$ was achieved after 10 days by lowering down propionate production. And it was also concluded that the reason for $H_2$ production decrease at an early stage was due to alcohol production by self detoxification mechanism against VFAs accumulation.

(Co)heritability of acetone and β-hydroxybutyrate concentrations in raw milk related to ketosis in Holsteins (홀스타인 젖소의 케톤증과 관련된 원유속 아세톤과 β-히드록시부틸산 함량에 대한 (공)유전력)

  • Cho, Kwang-Hyun;Cho, Chung-Il;Lee, Joon-Ho;Park, Kyung-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.915-921
    • /
    • 2015
  • This experiment was conducted to estimate the heritability and coheritablity of daily milk yield, acetone and ${\beta}$-hydroxybutyrate (BHBA) concentrations in raw milk. The average concentrations of acetone and BHBA were $135.54{\pm}96.29{\mu}mol$ and $61.08{\pm}66.76{\mu}mol$, respectively, and the differences between high group and low group cows were highly significant (p <0.01). The estimates of heritability of daily milk yield, acetone and BHBA concentrations were in the range of 0.18~0.21, 0.11~0.13 and 0.01~0.02, respectively. The estimate of heritability of $Log_e$acetone did not change much, while that of $Log_eBHBA$ increased to 0.03~0.04. The estimates of phenotypic and genetic correlation coefficients between acetone and BHBA were 0.44 and 0.48, respectively. In low milk yield group, the coheritability estimates of BHBA and $Log_eBHBA$ when selection was for daily milk yield were 0.26 and 0.32, respectively. These were higher than the coheritability estimate of acetone when selection was for daily milk yield. The same trend was noted in the coherihability estimates from the whole records using both high and low milk yield groups together. BHBA concentration seemed to be more effectively responding than acetone concentration when selection was for daily milk yield.

The Effect of Physical Chemistry Factors on Formation of Disinfection by-products (소독부산물 생성에 미치는 물리화학적인 인자 영향)

  • Chung Yong;Kim Jun-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.965-972
    • /
    • 2005
  • This research studied the effect of factors that are able to form disinfection by-products (DBPs) of chlorination, including natural organic matter (NOM) with sewage, bromide ions, pH and contact time. Trihalomethane (THMs) yield of $0.95{\mu}mol/mg$ was higher than other DBPs yield for the chlorinated humic acid samples. THMs yield of sewage sample was $0.14{\mu}mol/mg$ and haloacetonitriles (HANs) yield in the sewage samples were $0.13{\mu}mol/mg$ but only $0.02{\mu}mol/mg$ for the humic acid samples. As the concentration of bromide ions increased, brominated DBPs increased while chlorinated DBPs decreased, because bromide ions produce brominated DBPs. THMs were highest $(55.55{\mu}g/L)$ at a pH of 7.9 and haloacetic acids (HAAs) were highest $(34.98{\mu}g/L)$ at a pH of 5. Also THMs increased with increasing pH while HAAs decreased with increasing pH. After chlorination, the rate of THMs and HAA formation are faster at initial contact time and then reaches a nearly constant value after 24 hours. This study considers ways to reduce DBP formation by chlorination.

Anaerobic Hydrogen Fermentation of Food Waste Treated by Food Waste Disposer (주방용 오물분쇄기로 처리된 음식물류 폐기물의 혐기성 수소 발효)

  • Choi, Jae Min;Lee, Chae Young
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.468-474
    • /
    • 2014
  • This study was conducted to evaluate the characteristics of mesophilic fermentative $H_2$ production from food waste which was treated by food waste disposer. It was found that $H_2$ yield and lag phase were affected by particle size of food waste. The $H_2$ yield decreased with increasing particle size while lag phase increased. The maximum $H_2$ yield was found $0.584{\pm}0.03$ mol $H_2$/mol hexose at particle size smaller than 0.30 mm. The $H_2$ production rate was also affected by chemical composition of food waste. The $H_2$ production rate linearly decreased with increasing proteins to carbohydrates ratio(P/C ratio) where the maximum value was $0.031{\pm}0.006$ mol $H_2$/mol hexose h at 0.17.

The Growth Yield of Desulfovibrio desulfuricans M6 on Different Substrates

  • Park, Doo-Hyun;Shin, Chul-Su;Kim, Byung-Hong;Shin, Pyung-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.232-237
    • /
    • 1996
  • Growth yield of Desulfovibrio desulfuricans M6 was measured using different substrates. The cell yield of fermentative growth on pyruvate was 6.22 g cell $mol^{-l}$ pyruvate. Since 1 ATP is available from substrate-level phosphorylation from the oxidation of pyruvate to acetate, $Y_{ATP}$ of the bacterium should be the same as $Y_{pyruvate}$ (6.22 g cell $mol^{-l}$ ATP). The cell yields of the bacterium on different electron donors were measured with sulfate as the electron acceptor. Cell yields on lactate, pyruvate and $H_2$ were 9.39, 13.76 and 8.45 g cell $mol^{-l}$ substrate, respectively. From these figures ATP available from electron-transport phosphorylation (ETP) of the electron donors used was calculated. ATP produced by ETP of each electron donnor were 1.71 from pyruvate, 1.51 from lactate and 1.76 from $H_2$. These values show that electrons from the oxidation of lactate to pyruvate are consumed to reduce sulfate through a reverse electron transport mechanism requiring 0.2 ATP for each pair of electrons. Based on these results, discussions are made on the electron transport mechanism in the bacterium.

  • PDF

Influence of Substrate Concentration and Hydraulic Retention Time on the Hydrogen Production Using Anaerobic Microflora (혐기성 미생물을 이용한 수소생산에 있어서 기질농도 및 수리학적 체류시간의 영향)

  • Ko, In-Beom;Shin, Hang-Sik;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.911-916
    • /
    • 2006
  • The influence of substrate concentration and hydraulic retention time(HRT) on the hydrogen production by anaerobic microflora was investigated by conducting three series of continuous experiments the individual influences of substrate concentration and HRT. In series I, substrate concentration was increased from 3 to 27 g-glucose/L keeping HRT at 8 hr. Series II and III carried out same condition with series I at HRT of 16 hr and 24 hr, respectively. The effects of HRT and substrate concentration on the hydrogen production yield were analyzed by quadratic model. The maximum hydrogen production yield of 2.05 mol $H_2/mol$ glucose was found at the HRT of 9.6 hr and the substrate concentration of 15.4 g/L. The relationship between HRT and substrate concentration on hydrogen production yield as displayed a saddle shape in the response surface plot. Optimum HRT and substrate concentration are observed at in the range of 5 and 14 hr, at between 13 and 17 g/L, respectively, for the hydrogen production yield being 2 mol $H_2/mol$ glucose. The concentrations of organic acids increased with the increase of the amount of glucose consumption. Acetic acid and butyric acid were the main by-products from the glucose degradation.

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR) (생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성)

  • Jeong, Seong-Jin;Seo, Gyu-Tae;Lee, Taek-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

Synthesis of 3-(2-Amino-1-Phenylethyl)-2-methylindole

  • Lee, Seong-Hwan
    • Applied Biological Chemistry
    • /
    • v.1
    • /
    • pp.43-47
    • /
    • 1960
  • 1). By means of the F.H. Allene and James Allenes method of the ${\alpha}-methylindole$ synthesis, 2-methylindole was prepared with the Acetyl-o-toluidine and $NaNH_2$. yield; 88%, mp. $56.5{\sim}57^{\circ}C$. 2). 23.7 gr of 3-(-Nitro-1-phenylethyl)-2-melthylindole was prepared with 0.1 mol. of the 2-methylindole and 0.1 mol. of the ${\beta}-Nitrostyrene$. yield: 84.6%, mp. $104{\sim}105^{\circ}C$. 3). Analytical results. Calcd. for $C_{17}H_{16}N_2O_2$: C, 72.84; H, 5.63; N, 9.99. Found: C, 72.62; H, 5.63; N, 9.79.

  • PDF

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

Microbial Tansformatin of $\gamma$-Butyrobetaine into L-Carnitine by Achromobacter cylcoclast (Achromobacter cycloclast에 의한 $\gamma$-Butyrobetaine의 L-Carnitine에로의 생물전환)

  • 이은구;이인영;박영훈
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.205-211
    • /
    • 1999
  • We investigated optimal conditions for the microbial transformation of $\gamma$-butyrobetaine into L-carnitine by using Achromobacter cycloclast ATCC 21921. When the cells were cultivated in the medium containing $\gamma$-butyrobetaine as the sole carbon source for both cell growth and L-carnitine production, the maximum L-carnitine production was 2.9 g/L and the conversion yield from $\gamma$-butyrobetaine to L-carnitine was as low as 30.9 mol%. In order to enhance the L-carnitine production and the conversion yield, various carbon sources were added to the $\gamma$-butyronetaine containing basal medium. In the medium supplemented with glycerol, L-carnitine production was as high as 4.6 g/L and the conversion yield was 88.2 mol%, showing a significant improvement in L-carnitine synthesis compared to those in the medium without glycerol. We also examined the additional effect of quaternary ammonium compounds such as betaine and choline, which are similar in structure to $\gamma$-butyrobetaine and L-carnitien. It was observed that in the presence of those quaternary ammonium compounds, both the L-carnitine production rate and the conversion yield increased. In addition, we found that cell growth was inhibited by a $\gamma$-butyrobetaine concentration of more than 3%, while L-carnitine production was efficient at the $\gamma$-butyrobetaine concentration of 2-3%. By cultivating the cells in the optimal medium containing glycerol and choline, we obtained an L-carnitine concentration of 7.2 g/L with the conversion yield of 98.7 mol% in 4 days.

  • PDF