• 제목/요약/키워드: yield load

검색결과 857건 처리시간 0.028초

High-strength RC columns subjected to high-axial and increasing cyclic lateral loads

  • Bhayusukma, Muhammad Y.;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.779-796
    • /
    • 2014
  • This experimental investigation was conducted to examine the behavior and response of high-strength material (HSM) reinforced concrete (RC) columns under combined high-axial and cyclic-increasing lateral loads. All the columns use high-strength concrete ($f_c{^{\prime}}$=100MPa) and high-yield strength steel ($f_y$=685MPa and $f_y$=785MPa) for both longitudinal and transverse reinforcements. A total of four full-scale HSM columns with amount of transverse reinforcement equal to 100% more than that required by earthquake resistant design provisions of ACI-318 were tested. The key differences among those four columns are the spacing and configuration of transverse reinforcements. Two different constant axial loads, i.e. 60% and 30% of column axial load capacity, were combined with cyclically-increasing lateral loads to impose reversed curvatures in the columns. Test results show that columns under 30% of axial load capacity behaved much more ductile and had higher lateral deformational capacity compared to columns under the 60% of axial load capacity. The columns using closer transverse reinforcement spacing have slightly higher ductility than columns with larger spacing.

횡하중(橫荷重)을 받는 선각판(船殼板)의 비선형(非線形) 해석(解析) (Nonlinear Analysis of Ship Plating under Lateral Loads.)

  • 임상전;양영순
    • 대한조선학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 1980
  • The nonlinear analysis of ship plating with flat bar stiffners has been carried out by the finite element method based on the load incremental approach. The large deflection analysis has been done by using the Lagrangian description. The elastoplastic analysis has been performed by adopting the flow theory of plasticity and the von Mises yield condition. The layered elements are used to show the process of yielding through the plate thickness in the elasto-plastic analysis. The following results are obtained; 1) According to the large deflection analysis, it is shown that the small deflection theory to the plate is applicable in the range of the lateral deflection-the thickness ratio $w/h{\leqq}0.3$ and ship plating in the range of $w/h{\leqq}0.5$. 2) By means of the elasto-plastic analysis, it is found that the maximum load-carrying capacity of the plate increases as much as 1.8 times of the initial yield load in the case of the simply supported condition and 2.2 times in the clamped condition. It is also shown that the maximum load-carrying capacity of ship plating increase as much as 4.3 times in the simply supported condition and 4.2 times in the clamped condition. This method would be applied and extended to solve combined nonlinear problems which involve both material nonlinearity and geometric nonlinearity.

  • PDF

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

반도체 생산 공정에서 포토장비의 부하 밸런싱을 위한 Dedication 부하 기반 디스패칭 룰 (Dedication Load Based Dispatching Rule for Load Balancing of Photolithography Machines in Wafer FABs)

  • 조강훈;정용호;박상철
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2017
  • This research develops dispatching rule for a wafer FABs with dedication constraints. Dedication, mostly considered in a photolithography step, is a feature in a modern FABs in order to increase the yield of machines and achieve the advance of manufacturing technology. However, the dedication has the critical problem because it causes dedication load of machines to unbalance. In this paper, we proposes the dedication load based dispatching rule for load balancing in order to resolve the problem. The objective of this paper is to balance dedication load of photo machines in wafer FABs with dedication constraint. Simulation experiments show that the proposed rule improves the performance of wafer FABs as well as load balance for dedication machines compared to open-loop control based conventional dispatching rule.

반복하중을 받는 짧은 I형 보의 횡-비틀림 좌굴의 일반적 응답에 관한 고찰 (General Response for Lateral-Torsional Buckling of Short I-Beams Under Repeated Loadings)

  • 이상갑
    • 전산구조공학
    • /
    • 제5권1호
    • /
    • pp.119-132
    • /
    • 1992
  • 반복하중을 받는 짧은 I보(Beam)의 횡-비틀림 좌굴(Lateral-Torsional Buckling)에 대한 광범위한 Parametric Study를 수행하여 보의 좌굴현상을 좀 더 깊이 고찰하고자 한다. 유한한 비틀림변형의 뒤틀림(Warping)이외에 미소한 절단변형의 뒤틀림도 고려한 기하학적(완전) 비선형의 일차원 보를 해석적 모델로 사용하고, 또한 금속의 주기적소성(Cyclic Plasticity)거동을 보다 잘 나타내기 위해 다축 주기적소성모델을 Consistent Return Mapping Algorithm과 결합시켜 적용한다. 기준치 근방에서 아래와 같은 여러가지 Parameter Study를 수행하므로써 반복하중을 받는 짧은 I보의 횡-비틀림 좌굴의 일반적 응답을 고찰한다 : 재료의 강복강도, 강복플래토(Yield Plateau), 변형율경화, 이동경화(Kinematic Hardening), 잔류응력, 작용하중의 절단중심에 대한 편심률, 작용하중의 보 단면에 대한 높이, 작용하중의 보 길이방향의 위치, 보 단면의 치수, 작용하중으로부터 멀리 떨어진 지지단의 고정도.

  • PDF

강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정 (Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate)

  • 김성원;홍혜민;한택희;서승남
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

강섬유보강 콘크리트 패널에 대한 실험연구 (Experimental Study of Steel Fiber Concrete Panel)

  • 박홍용;임상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.307-310
    • /
    • 1999
  • In this panel test, the toughness and post-cracking tensile strength of SFRC(Steel Fiber Reinforced Concrete) measured on 24 panels(size; 60cm $\times$ 60cm $\times$ 10cm) which are the basic characteristics than can determine the load bearing capacity of SFRC are investigated. Those values are calculated using load-deflection curves and load-absorbed energy curves. Post-cracking tensile strength of SFRC in this study are determined by yield line theory. From the test results, it is seen that the higher the volume of steel fiber is, the higher the absorbed energy is.

  • PDF

균열을 가진 강구조부재의 한계하중에 대한 유한요소해석 (Finite Element Analysis of Cracted Structural Steel Member)

  • 박용걸
    • 전산구조공학
    • /
    • 제8권1호
    • /
    • pp.123-126
    • /
    • 1995
  • The purpose of the analysis is the numerical simulation of structures strained to the limit loads. The finite element calculations and experiments with cracked structures have been carried out yielding over limit strains between 10% and 15% by single peak load. Load versus displacement-diagrams and J-diagrams up to the limit load are calculated. By this way the influence of geometric parameters may be assessed in the post yield region. It is proposed to use such calculations to correlate experiments carried out with small specimens to experiments simulating the true dimensions of the design structure.

  • PDF