• 제목/요약/키워드: yield learning

검색결과 132건 처리시간 0.031초

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

대학 통계 수업에서 가르치기가 수학 불안 감소에 미치는 영향 (Effect of teaching on reducing mathematics anxiety in university statistics class)

  • 이영림
    • 디지털융복합연구
    • /
    • 제19권3호
    • /
    • pp.99-108
    • /
    • 2021
  • 다른 사람에게 학습 자료를 가르치는 것의 이점은 학업 성취도에서 나타났다. 불안은 학습을 방해하는 요인 중 하나이고 수학 불안은 수학 성취도와 밀접한 관련이 있음이 밝혀졌다. 따라서 본 연구의 목적은 대학생들이 통계를 학습할 때 다른 사람을 가르치는 것이 수학 불안에 도움을 주는지 알아보는 것이다. 통계수업에 등록한 학생들 59명이 참여했고 30명의 학생은 그룹 안에서 다른 학생을 가르치는 그룹 과제를 수행했고, 29명의 학생은 수행하지 않았다. 그룹 과제를 제외하고 강사, 강의, 문제 풀이 과제와 시험은 모두 동일했다. 그 결과, 가르치는 그룹 과제를 수행한 학생들의 수학 불안은 학기 말에 감소하였다. 수학 불안이 증가하면 통계 학습에 대한 태도가 부정적으로 나타나고 그 결과 학습 성취도가 저하되었다. 또한, 수학 불안과 통계 학습에 대한 태도의 관계는 다른 사람을 가르치는 것으로 조절되었다. 이러한 결과는 가르치기는 수학 불안을 감소시키는 데 영향을 미쳐 지속적인 학습 이득을 얻을 수 있음을 시사한다.

적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어 (Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller)

  • 고재섭;최정식;김도연;정병진;강성준;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

확률론적 최적제어와 기계학습을 이용한 동적 트레이딩 전략에 관한 고찰 (Investigations on Dynamic Trading Strategy Utilizing Stochastic Optimal Control and Machine Learning)

  • 박주영;양동수;박경욱
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.348-353
    • /
    • 2013
  • 최근들어, 확률론적 최적제어를 포함한 제어이론과 각종 기계학습 기반 인공지능 방법론은 금융공학 분야의 주요 도구로 자리를 잡아 가고 있다. 본 논문에서는 평균회귀 현상을 보이는 시장을 위한 페어 트레이딩 전략 분야와 추세 추종형 트레이딩 전략 분야에 대해 확률론적 최적제어 이론을 활용한 최신 논문 몇 편을 간단히 살펴보고, 보다 융통성 있고 접근성이 좋은 도구를 확보하기 위하여 확률론적 최적제어이론과 기계학습 기법을 동시에 응용하는 전략을 고려한다. 예시를 위하여 실시한 시뮬레이션은 본 논문에서 고려한 전략이 실제 금융시장 데이터를 대상으로 적용될 때 고무적인 결과를 제공할 수 있음을 보여준다.

Semi-Supervised Spatial Attention Method for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3685-3707
    • /
    • 2021
  • In recent years, facial attribute editing has been successfully used to effectively change face images of various attributes based on generative adversarial networks and encoder-decoder models. However, existing models have a limitation in that they may change an unintended part in the process of changing an attribute or may generate an unnatural result. In this paper, we propose a model that improves the learning of the attention mask by adding a spatial attention mechanism based on the unified selective transfer network (referred to as STGAN) using semi-supervised learning. The proposed model can edit multiple attributes while preserving details independent of the attributes being edited. This study makes two main contributions to the literature. First, we propose an encoder-decoder model structure that learns and edits multiple facial attributes and suppresses distortion using an attention mask. Second, we define guide masks and propose a method and an objective function that use the guide masks for multiple facial attribute editing through semi-supervised learning. Through qualitative and quantitative evaluations of the experimental results, the proposed method was proven to yield improved results that preserve the image details by suppressing unintended changes than existing methods.

Filter Method와 Classification 알고리즘을 이용한 전자상거래 블랙컨슈머 탐지에 대한 연구 (Black Consumer Detection in E-Commerce Using Filter Method and Classification Algorithms)

  • 이태규;이경호
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1499-1508
    • /
    • 2018
  • 빠른 속도로 성장하고 있는 전자상거래 시장이 기업들에게 고객층을 넓혀나갈 좋은 기회를 제공하고 있는 반면에 블랙컨슈머로 인한 기업들의 피해 사례 또한 늘어나고 있다. 본 연구는 전자상거래 고객 데이터를 통해 전자상거래상의 블랙컨슈머를 탐지해내는 머신 러닝 모델을 구축하고 최적화하는 것을 목표로 한다. Feature selection의 filter method와 4개의 classification 알고리즘을 이용한 실험을 통해 F-measure 0.667의 정확도로 블랙컨슈머를 탐지하는 모델을 구축하였으며 F-measure에서 11.44%, AURC에서 10.51%, TPR에서 22.87%의 성능 향상을 확인 할 수 있었다.

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

Thermography-based coating thickness estimation for steel structures using model-agnostic meta-learning

  • Jun Lee;Soonkyu Hwang;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.123-133
    • /
    • 2023
  • This paper proposes a thermography-based coating thickness estimation method for steel structures using model-agnostic meta-learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured using an infrared (IR) camera. The measured heat responses are then analyzed using model-agnostic meta-learning to estimate the coating thickness, which is visualized throughout the inspection surface of the steel structure. Current coating thickness estimation methods rely on point measurement and their inspection area is limited to a single point, whereas the proposed method can inspect a larger area with higher accuracy. In contrast to previous ANN-based methods, which require a large amount of data for training and validation, the proposed method can estimate the coating thickness using only 10- pixel points for each material. In addition, the proposed model has broader applicability than previous methods, allowing it to be applied to various materials after meta-training. The performance of the proposed method was validated using laboratory-scale and field tests with different coating materials; the results demonstrated that the error of the proposed method was less than 5% when estimating coating thicknesses ranging from 40 to 500 ㎛.

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.

Visualization of University Curriculum for Multidisciplinary Learning: A Case Study of Yonsei University, South Korea

  • Geonsik Yu;Sunju Park
    • Journal of Information Science Theory and Practice
    • /
    • 제12권1호
    • /
    • pp.77-86
    • /
    • 2024
  • As the significance of knowledge convergence continues to grow, universities are making efforts to develop methods that promote multidisciplinary learning. To address this educational challenge, our paper applies network theory and text mining techniques to analyze university curricula and introduces a graphical syllabus rendering method. Visualizing the course curriculum provides a macro and structured perspective for individuals seeking alternative educational pathways within the existing system. By visualizing the relationships among courses, students can explore different combinations of courses with comprehensive search support. To illustrate our approach, we conduct a detailed demonstration using the syllabus database of Yonsei University. Through the application of our methods, we create visual course networks that reveal the underlying structure of the university curriculum. Our results yield insights into the interconnectedness of courses across various academic majors at Yonsei University. We present both macro visualizations, covering 18 academic majors, and visualizations for a few selected majors. Our analysis using Yonsei University's database not only showcases the value of our methodology but also serves as a practical example of how our approach can facilitate multidisciplinary learning.